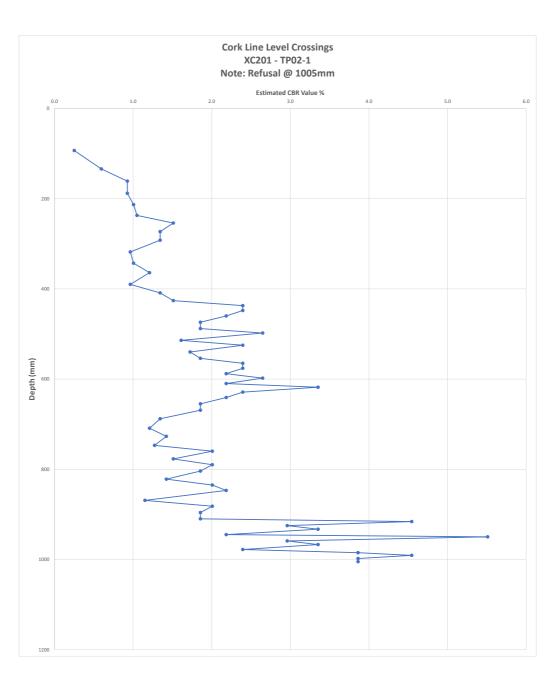
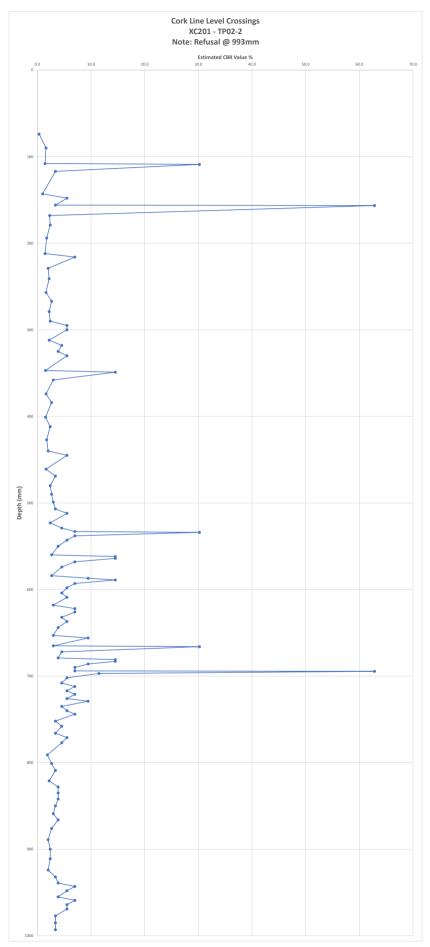

Appendix E

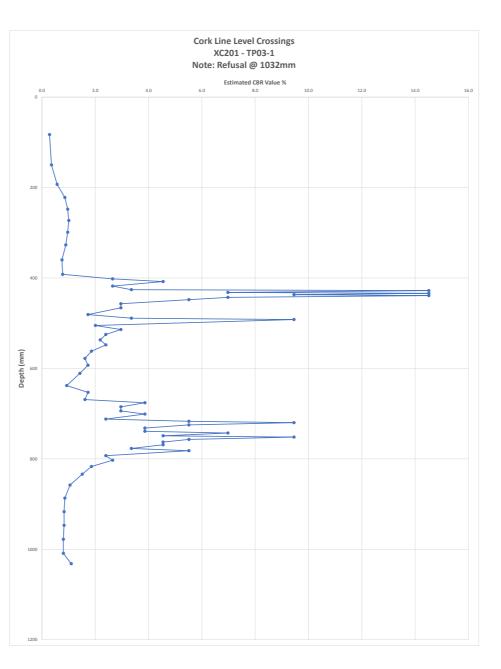
Indirect CBR Test Data


cation	XC201 - TP01-1	Job No	19-135	
Easting	Northing	Elevation		
est Start Depth	0	mm/bgl	DATE	٦
art Reading:	1140	mm	14/07/2020]
No. of Blows	READING	Penetration/blow	DEPTH	CBR
	(mm)	(mm)		%
1	1101	39	39	0.6
2	1057	44	83	0.6
3	1003	54	137	0.4
4	965	38	175	0.6
5	931	34	209	0.7
6	902	29	238	0.9
7	873	29	267	0.9
8	842	31	298	0.8
9	812	30	328	0.8
10	785	27	355	0.9
11	751	34	389	0.7
12	721	30	419	0.8
13	690	31	450	0.8
14	658	32	482	0.8
15	626	32	514	0.8
16	593	33	547	0.7
17	566	27	574	0.9
18	526	40	614	0.6
19	509	17	631	1.5
20	505	4	635	7.0
21	501	4	639	7.0
22	495	6	645	4.5
23	493	2	647	14.5
24	486	7	654	3.9
25	482	4	658	7.0
26	475	7	665	3.9
27	465	10	675	2.6
28	455	10	685	2.6
29	443	10	697	2.2
30	428	15	712	1.7
31	414	14	726	1.9
32	408	6	732	4.5
33	403	5	737	5.5
34	398	5	742	5.5
35	398	0	742	0.0
36	392	6	748	4.5
37	392	0	748	5
38	392	0	748	

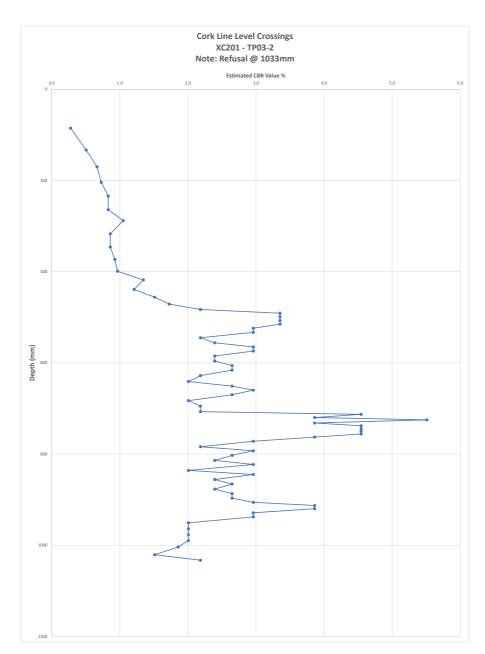
ocation	XC201 - TP01-2	Job No	19-135]
Easting	Northing	Elevation		
est Start Depth	0	mm/bgl	DATE]
tart Reading:	1140	mm	14/07/2020	J
No. of Blows	READING	Penetration/blow	DEPTH	CBR
	(mm)	(mm)		%
1	1068	72	72	0.3
2	1056	12	84	2.2
3	979	77	161	0.3
4	943	36	197	0.7
5	910	33	230	0.7
6	883	27	257	0.9
7	854	29	286	0.9
8	824	30	316	0.8
9	794	30	346	0.8
10	766	28	374	0.9
11	750	16	390	1.6
12	738	12	402	2.2
13	720	18	420	1.4
14	699	21	441	1.2
15	678	21	462	1.2
16 17	667	11	473 484	2.4 2.4
	656			
18 19	646	10	494 504	2.6
20	636 627	10	513	2.6 3.0
20	619	8	515	3.4
21	609	10	531	2.6 3.0 2.6 2.4
22	600	9	540	
23	590	10	550	
24	579	10	561	
25	569	10	571	2.4
20	559	10	581	2.6
28	549	10	591	2.6
29	543	6	597	4.5
30	538	5	602	5.5
31	529	9	611	3.0
32	526	3	614	9.5
33	521	5	619	5.5
34	518	3	622	9.5
35	514	4	626	7.0
36	510	4	630	7.0
37	506	4	634	7.0
38	502	4	638	7.0
39	498	4	642	7.0
40	494	4	646	7.0
41	489	5	651	5.5
42	486	3	654	9.5
43	483	3	657	9.5
44	483	0	657	
45	483	0	657	

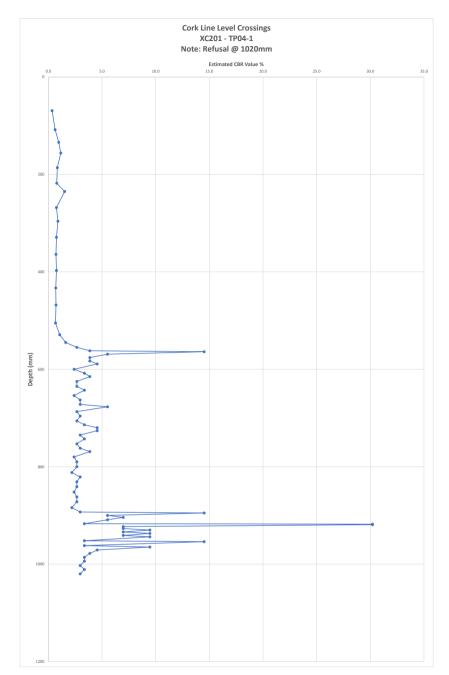


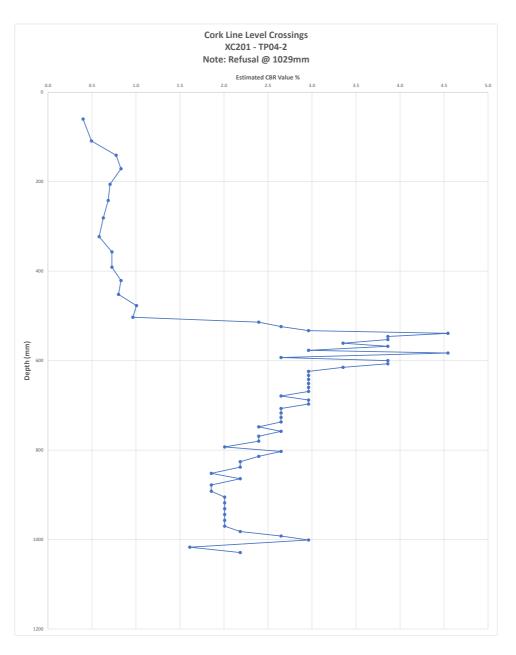
Location	XC201 - TP02-1	Job No	19-135	
Easting	Northing	Elevation	l	
Test Start Depth	0	mm/bgl	DATE	1
Start Reading:	1123	mm	14/07/2020	
No. of Blows	READING (mm)	Penetration/blow (mm)	DEPTH	CBR %
1	1030	93	93	0.3
2	989	41	134	0.6
3	962 935	27	161 188	0.9
5	910	25	213	1.0
6	886	24	237	1.0
7	869 850	17 19	254 273	1.5 1.3
9	831	19	292	1.3
10	805	26	318	1.0
11	780	25	343	1.0
12	759 733	21 26	364 390	1.2 1.0
14	714	19	409	1.3
15	697	17	426	1.5
16	686 675	11 11	437 448	2.4 2.4
18	663	12	448	2.4
19	649	14	474	1.9
20	635	14	488	1.9
21	625	10	498 514	2.6
23	598	11	525	2.4
24	583	15	540	1.7
25	569 558	14 11	554 565	1.9 2.4
27	547	11	576	2.4
28	535	12	588	2.2
29	525 513	10 12	598 610	2.6
31	505	8	618	3.4
32	494	11	629	2.4
33	482	12	641	2.2
34	468 454	14	655 669	1.9 1.9
36	435	19	688	1.3
37	414	21	709	1.2
38	396 376	18 20	727 747	1.4 1.3
40	363	13	760	2.0
41	346	17	777	1.5
42	333 319	13	790 804	2.0
43	301	14	822	1.5
45	288	13	835	2.0
46	276 254	12 22	847 869	2.2
47	234	13	882	2.0
49	227	14	896	1.9
50	213	14	910	1.9
51	198	6 9	916 925	4.5 3.0
53	190	8	933	3.4
54	178	12	945	2.2
55 56	173 164	5	950 959	5.5 3.0
57	156	8	967	3.4
58	145	11	978	2.4
59 60	138 132	7	985 991	3.9 4.5
61	132	7	991	3.9
62	118	7	1005	3.9



Cork Line Level Crossings - Irish Rail Transport Research Laboratory - Dyn


Location	XC201 - TP02-2	Job No	19-135	1
Easting	Northing	Elevation		
fest Start Depth	0	mm/bgl	DATE]
tart Reading:	1154	mm	14/07/2020]
No. of Blows	READING (mm) 1080	Penetration/blow (mm)	DEPTH 74	CBR %
2	1064	74 16 18	90	0.3 1.6 1.4
4	1046 1045 1037	18	108 109 117	30.2 3.4
6	1037 1011 1006	26	117 143 148	3.4 1.0
8	998	8	156	3.4
9 10	997.5 986	0.5	156.5 168	62.8 2.3
11 12 13	975 960 942	11 15 18	179 194	2.4 1.7 1.4
13 14 15	938 925	4 13	212 216 229	7.0
15	925 913 897	13 12 16	229 241 257	2.0
17 18 19	887 875	10 10 12	267 279	2.6
20	864	11	290	2.4
21 22	859 854	5	295 300	5.5 5.5 2.2
23 24	842 836	12 6	312 318	4.5
25 26	829 824	7	325 330	3.9
27	807 805 706	17	347 349	1.5
29 30	796 780	9 16	358 374	3.0 1.6
31	770 753	10	384 401	2.6
33 34	742 727	11 15	412 427	2.4
35 36	714 709	13 5	440 445	2.0 5.5
37 38	693 685	16 8	461 469	1.6 3.4
39 40	674 664	11 10	480 490	2.4 2.6
41 42	655 647	9 8	499 507	3.0 3.4
43 44	642 631	5 11	512 523	5.5 2.4
45 46	625 621	6 4	529 533	4.5 7.0
47	620 616	1 4	534 538	30.2
49 50	611 604	5	543 550	5.5
51	594 592	10	560 562	2.6
53	590 586	2 4	564	14.5
55	580	4 6 10	574	4.5
57	567	3	584 587 589	9.5 14.5
59	561	2	593	7.0
60 61	556 550	5	598 604	5.5
62 63	545 536	5	609 618	5.5 3.0
64 65	532 528	4 4	622 626	7.0 7.0
66 67	522 517	6 5	632 637	4.5 5.5
68 69	510 501	7	644 653	3.9 3.0
70 71	498 489	3	656 665	9.5 3.0
72	488 482	1 6	666 672	30.2 4.5
74 75	475 473	7	679 681	3.9 14.5
76 77	471 468	2 3	683 686	14.5 9.5
78	464 460	4	690 694	7.0
80	459.5 457	0.5	694.5 697	62.8 11.5
82	452	5	702 708	5.5
84 85	440 442 437	4	712 717	7.0
85 86 87	437 433 428	4	721 726	7.0
88	425	3	729	9.5
89 90	419 414 410	6 5 4	735 740 744	4.5
91 92	410 402	8	744 752 759	7.0
93 94	396 388	6	758	4.5
95 96	383 377	5	771 777	5.5
97 98	363 353	14 10	791 801	1.9 2.6
99 100	345 333	8 12	809 821	3.4 2.2
101 102	326 319	7 7	828 835	3.9 3.9
103 104	312 304	7 8	842 850	3.9 3.4
105 106	295	9 7	859 866	3.0 3.9
100 107 108	278 265	10	876 889	2.6
108 109 110	255 254 243	15	900	2.4
110 111 112	243 230 222	11 13 8	911 924 932	2.4 2.0 3.4
113	215	7	939	3.9
114 115	211 206	4 5	943 948	7.0
116	199 195	7 4	955 959	3.9
118 119	190 185	5	964 969	5.5 5.5
120	177	8	977	3.4


Location XC201 - TP03		Job No	19-135]
Easting	Northing	Elevation		
				-
est Start Depth start Reading:	0 1143	mm/bgl mm	DATE 14/07/2020	_
No. of Blows	READING	Penetration/blow	DEPTH	CBR
NO. OF BIOWS	(mm)	(mm)	DEPTH	%
1	1060	83	83 150	0.3
3	993	67 43	150	0.4
4	921	29	222	0.9
5	895	26	248	1.0
6	870	25	273	1.0
7	844 816	26 28	299 327	1.0
9	783	33	360	0.5
10	751	32	392	0.8
11	741	10	402	2.6
12	735	6	408	4.5
13	725	10	418	2.6
14	717 715	8	426 428	3.4 14.5
15	715	4	428	7.0
10	709	2	434	14.5
18	706	3	437	9.5
19	704	2	439	14.5
20	700	4	443	7.0
21	695 686	5	448 457	5.5 3.0
22	677	9	457	3.0
24	662	15	481	1.7
25	654	8	489	3.4
26	651	3	492	9.5
27	638	13	505	2.0
28	629 618	9 11	514	3.0
30	606	11 12	525	2.4
31	595	11	548	2.4
32	581	14	562	1.9
33	565	16	578	1.6
34	550	15	593	1.7
35 36	532 505	18 27	611 638	1.4 0.9
37	490	15	653	1.7
38	474	16	669	1.6
39	467	7	676	3.9
40	458	9	685	3.0
41	449	9	694	3.0
42	442	11	701	3.9
43	431 426	5	717	5.5
45	423	3	720	9.5
46	418	5	725	5.5
47	411	7	732	3.9
48 49	404 400	7 4	739	3.9 7.0
50	394	6	743	4.5
51	391	3	752	9.5
52	386	5	757	5.5
53	380	6	763	4.5
54 55	374 366	6 8	769 777	4.5 3.4
55	365	5	782	3.4
57	350	11	793	2.4
58	340	10	803	2.6
59	326	14	817	1.9
60	309	17	834	1.5
61 62	285 256	24	858 887	1.0
63	256	30	917	0.9
64	196	30	947	0.8
				TF T
65 66	165 134	31 31	978 1009	0.8


Location	XC201 - TP03-2	Job No	19-135	
Easting	Northing	Elevation		
Test Start Depth Start Reading:	0 1139	mm/bgl mm	DATE 14/07/2020	
No. of Blows	READING (mm)	Penetration/blow (mm)	DEPTH	CBR %
1	1054	85	85	0.3
2	1006	48	133	0.5
3	969 935	37 34	170 204	0.7
4	905	34	234	0.7
6	875	30	264	0.8
7	851	24	288	1.0
8	822	29 29	317 346	0.9
10	793	29	346	0.9
11	740	26	399	1.0
12	721	19	418	1.3
13	700	21	439	1.2
14	683 668	17 15	456 471	1.5 1.7
15	656	13	471 483	2.2
17	648	8	491	3.4
18	640	8	499	3.4
19	632	8	507	3.4
20	624 615	8	515 524	3.4 3.0
22	606	9	533	3.0
23	594	12	545	2.2
24	583	11	556	2.4
25	574	9	565 574	3.0 3.0
20	554	11	585	2.4
28	543	11	596	2.4
29	533	10	606	2.6
30	523	10	616	2.6
31	511 498	12	628 641	2.2
33	488	10	651	2.6
34	479	9	660	3.0
35	469 456	10	670 683	2.6
36	456	13 12	695	2.0
38	432	12	707	2.2
39	426	6	713	4.5
40	419	7	720	3.9
41 42	414 407	5	725 732	3.9
42	401	6	738	4.5
44	395	6	744	4.5
45	389	6	750	4.5
46	383 376	6	756 763	4.5 3.9
47	3/6 367	9	763	3.9
49	355	12	784	2.2
50	346	9	793	3.0
51	336 325	10 11	803 814	2.6
52	325 316	9	814	3.0
54	303	13	836	2.0
55	294	9	845	3.0
56	283	11	856	2.4
57	273 262	10 11	866 877	2.6
59	252	10	887	2.4
60	242	10	897	2.6
61	233	9	906	3.0
62	226	7	913	3.9
64	219 210	9	920	3.9
65	201	9	938	3.0
66	188	13	951	2.0
67	175	13	964	2.0
68	162 149	13	977 990	2.0
70	135	13	1004	1.9
71	118	17	1021	1.5
72	106	12	1033	2.2

Location	XC201 - TP04-1	Job No	19-135	
Easting	Northing	Elevation	1	
Lasting	Northing	Lievation		
			- 1	
Test Start Depth Start Reading:	0 1139	mm/bgl mm	DATE 14/07/2020	
	1135	10000		
No. of Blows	READING	Penetration/blow	DEPTH	CBR
1	(mm) 1070	(mm) 69	69	% 0.3
2	1070	39	108	0.6
3	1005	26	134	1.0
4	983	22	156	1.2
5	953	30	186	0.8
6	921	32	218	0.8
8	871 843	33 28	268 296	0.7
10	810	33	329	0.7
11	775	35	364	0.7
12	742	33	397	0.7
13	706	36	433	0.7
14	671	35	468	0.7
15	634	37	505	0.7
16	610	24	529	1.0
17	594 584	16 10	545 555	1.6 2.6
18	584	7	555	2.6
20	575	2	564	14.5
21	570	5	569	5.5
22	563	7	576	3.9
23	556	7	583	3.9
24	550	6	589	4.5
25	539	11	600	2.4
26	531	8	608	3.4
27 28	524 514	10	615 625	3.9 2.6
20	504	10	635	2.6
30	496	8	643	3.4
31	485	11	654	2.4
32	476	9	663	3.0
33	467	9	672	3.0
34	462	5	677	5.5
35	452	10	687	2.6
36 37	443	9 10	696 706	3.0
37	433	10	706	2.6
39	419	6	720	4.5
40	413	6	726	4.5
41	404	9	735	3.0
42	396	8	743	3.4
43	386	10	753	2.6
44	377	9	762	3.0
45 46	370 359	7	769 780	3.9 2.4
48	349	10	790	2.4
48	339	10	800	2.6
49	327	12	812	2.2
50	318	9	821	3.0
51	308	10	831	2.6
52	298	10	841	2.6
53	287	11	852	2.4
54 55	277	10	862 872	2.6
55	267 255	10	872	2.6
57	235	9	893	3.0
58	244	2	895	14.5
59	239	5	900	5.5
60	235	4	904	7.0
61	230	5	909	5.5
62	222	8	917	3.4 30.2
63	221	1	918 919	30.2
65	216	4	919	7.0
66	210	4	927	7.0
67	209	3	930	9.5
68	205	4	934	7.0
69	202	3	937	9.5
70	198	4	941	7.0
71	195	3	944	9.5
72	187	8	952	3.4 14.5
73 74	185 177	2 8	954 962	14.5 3.4
74	177	3	962	3.4 9.5
76	168	6	971	4.5
77	161	7	978	3.9
78	153	8	986	3.4
79	145	8	994	3.4
80	136 128	9	1003 1011	3.0 3.4

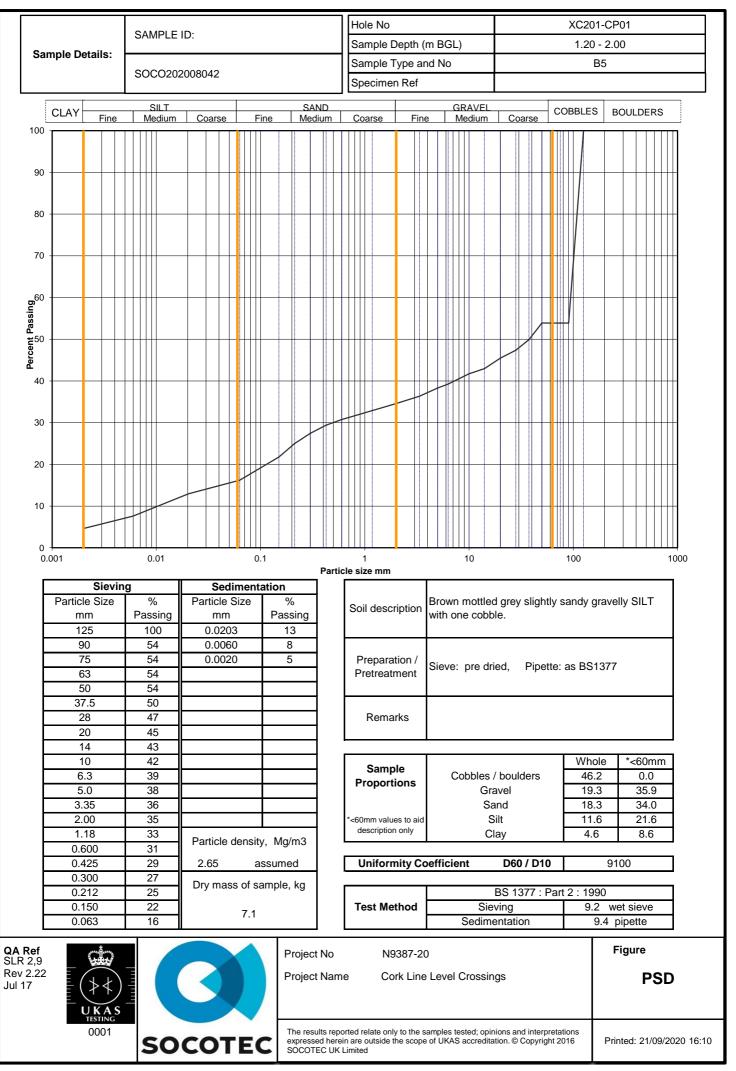
Location	XC201 - TP04-2	Job No	19-135	l
Easting	Northing	Elevation		
Test Start Depth	0	mm/bgl	DATE	1
Start Reading:	1138	mm	14/07/2020	
No. of Blows	READING (mm)	Penetration/blow (mm)	DEPTH	CBR %
1	1078	60	60	0.4
2	1029	49	109	0.5
3	997	32	141	0.8
4	967	30	171	0.8
5	932	35	206	0.7
6	896 857	36 39	242 281	0.7
8	815	42	323	0.6
9	781	34	357	0.7
10	747	34	391	0.7
11	717	30	421	0.8
12	686	31	452	0.8
13 14	661 635	25 26	477 503	1.0 1.0
14	624	11	503	2.4
16	614	10	524	2.6
17	605	9	533	3.0
18	599	6	539	4.5
19	592	7	546	3.9
20	585	7	553	3.9
21 22	577 570	8	561 568	3.4 3.9
22	561	9	577	3.9
24	555	6	583	4.5
25	545	10	593	2.6
26	538	7	600	3.9
27	531	7	607	3.9
28 29	523 514	8	615	3.4 3.0
30	505	9	624 633	3.0
31	496	9	642	3.0
32	487	9	651	3.0
33	478	9	660	3.0
34	469	9	669	3.0
35	459	10	679	2.6
36 37	450 441	9	688 697	3.0 3.0
37	441 431	10	707	2.6
39	421	10	717	2.6
40	411	10	727	2.6
41	401	10	737	2.6
42	390	11	748	2.4
43 44	380 369	10	758 769	2.6 2.4
44	358	11 11	769	2.4
45	345	13	793	2.4
47	335	10	803	2.6
48	324	11	814	2.4
49	312	12	826	2.2
50	300 286	12	838	2.2
51 52	286	14	852 864	2.2
53	260	12	878	1.9
54	246	14	892	1.9
55	233	13	905	2.0
56	220	13	918	2.0
57	207	13	931	2.0
58 59	194 181	13	944 957	2.0
59	181 168	13	957	2.0
61	156	13	982	2.0
62	146	10	992	2.6
63	137	9	1001	3.0
64	121	16	1017	1.6

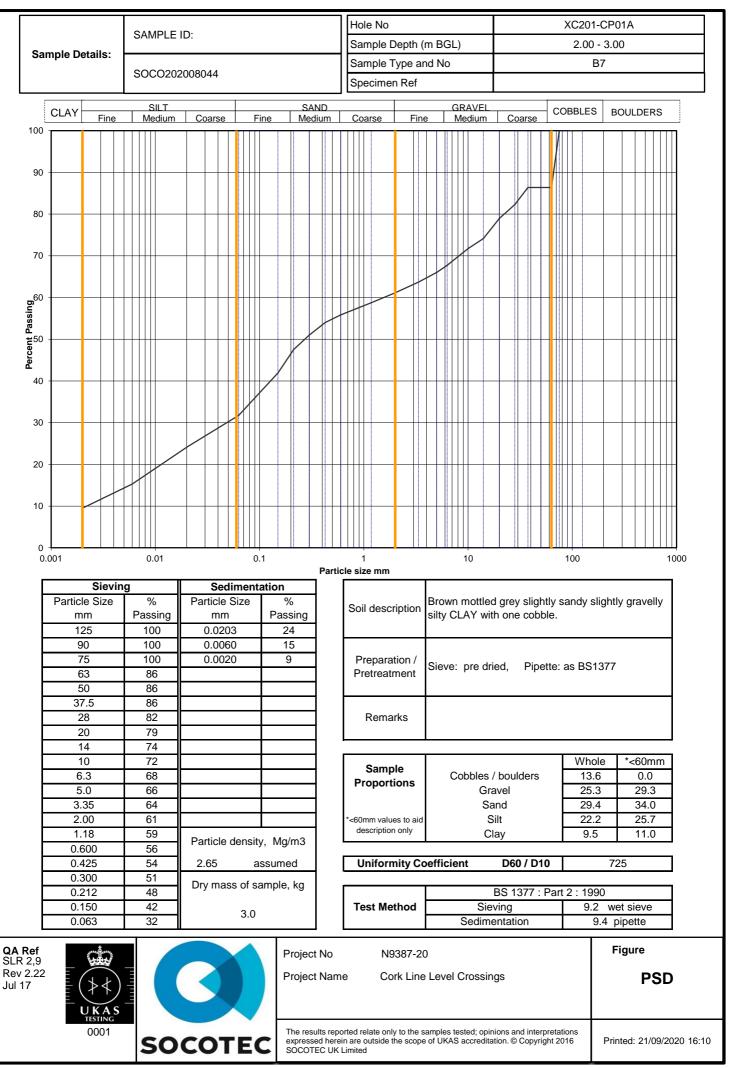
Appendix F

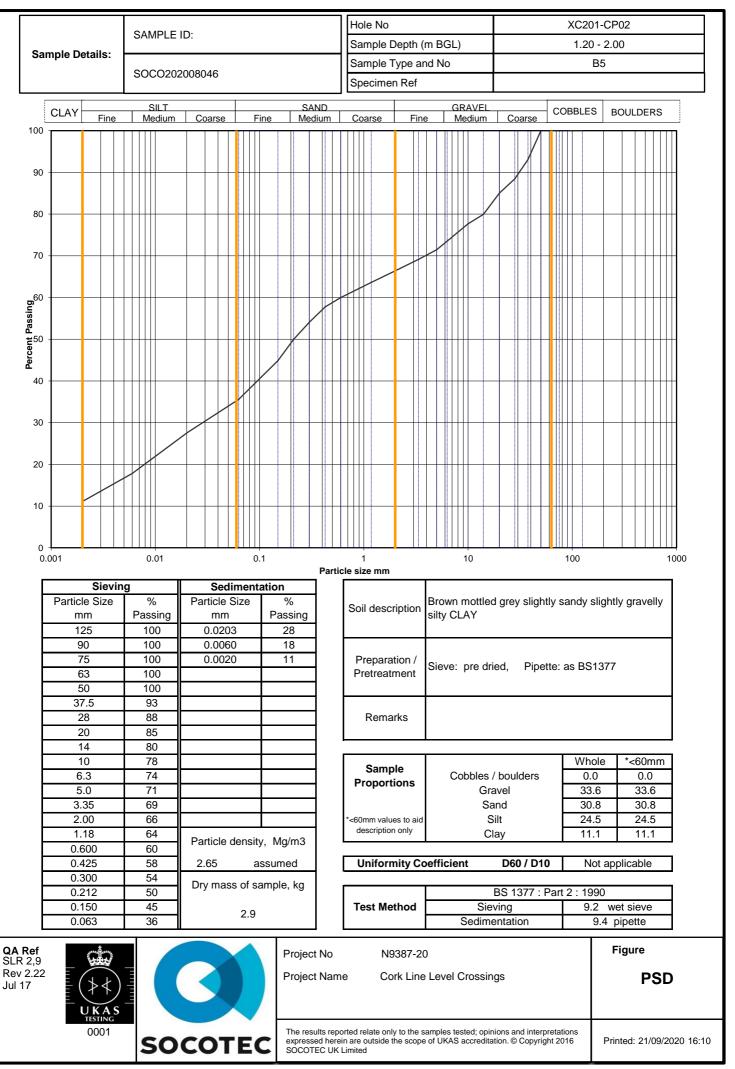
Water Purging Data & Logs

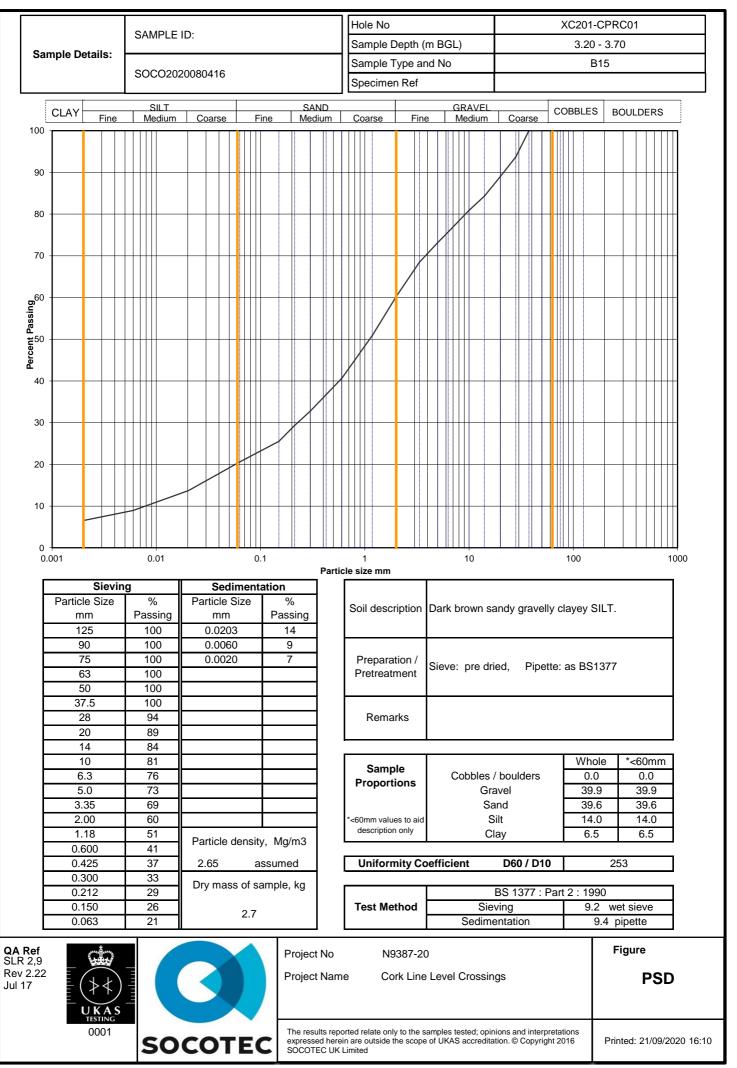
Job Name: Job Nr:	I.E - Cork Line 19-135			h (m) r (m) r2 TWV (m3)	6 0.0505 0.00255025 0.048071192
BH ID:	XC201-CPRC01A		Theoretical Well Volume	48.07	ltrs
Depth to Response Zone:	Top (mbgl) 4	Bottom (mbgl)	TWV x3	144.21	ltrs
	4	10			
Purge Start Time:	15:38			(mbgl)	
Purge Finish Time:	16:30		Depth to Water	1.06	
			Total Depth	7.23	
Depth to water after purging:		mbgl			
	Time Taken to fill 25ltr container(mins)	Flow Rate I/min		Date	06/08/2020
Reading 1:	4	5			
		-			
Reading 2:	4	5			
Reading 3:	4	5			
Nr of Containers filled:	[9			
Total Volume Purged:	ſ	190	litres		
Total volume Fulged.	L	100	nues -		
	Temperature	PН	Electrical Conductivity	Dissolved Oxygen	Redox Potential
Reading 1	18.23	5.93	17.79	0.53	23.9
Reading 2	16.4	6.02	14.34	0.55	20.8
Reading 3	14.76	6.12	12.09	0.57	18.6
Reading 4	14.4	6.46		0.51	17.4
Reading 5	14.04	6.36		0.56	20.6
Reading 6	13.57	6.39		0.56	21.2
Reading 7	13.15	6.54		0.57	21.6
Reading 8	13.11	6.55		0.57	21.7
Reading 9	12.84	6.52		0.57	22
Reading 10	12.58	6.48		0.58	22.2
Reading 11	12.63	6.46		0.57	22.4
Reading 12	12.41	6.5		0.57	23.1

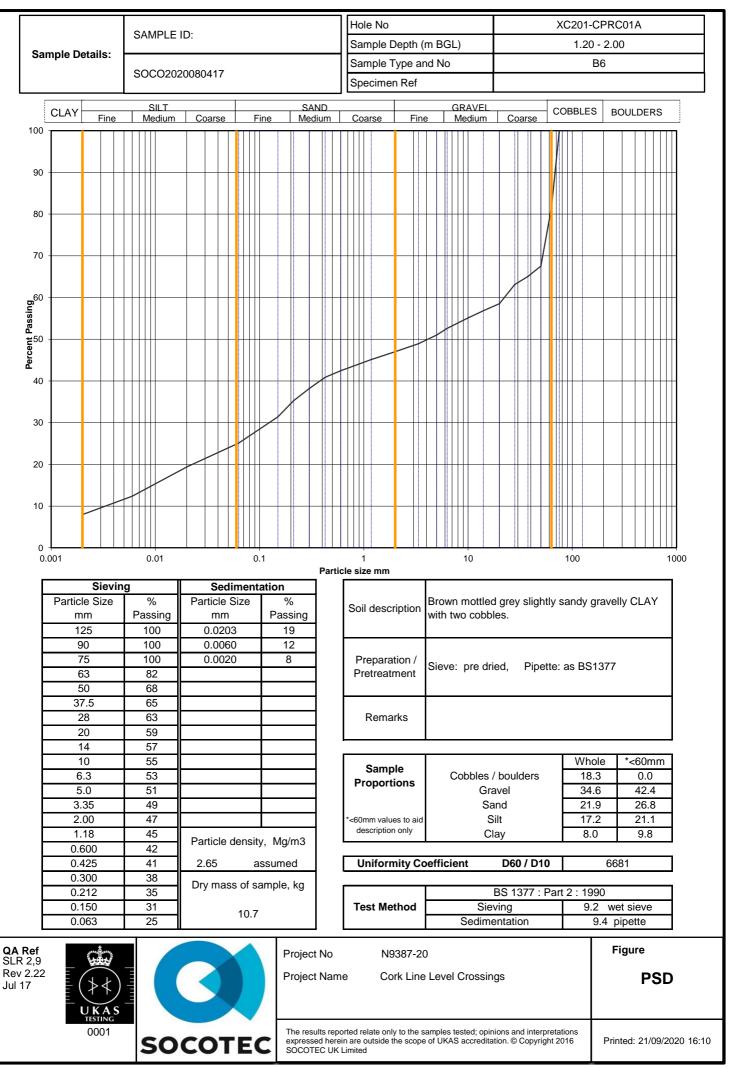
0.050 0.0025502 0.01602373	(m) (m) 2 WV (m3)	r r.	Job Name: I.E - Cork Line Job Nr: 19-135						
rs	16.02 <i>ltr</i>	Theoretical Well Volume		XC201-CPRC02	BH ID:				
rs	48.07 ltr	TWV x3	Bottom (mbgl)	Top (mbgl)	Depth to Response Zone:				
			4	2					
	(mbgl)			11:18	Purge Start Time:				
	1.1	Depth to Water		12:55	Purge Finish Time:				
	3.87	Total Depth							
			mbgl	3.53	Depth to water after purging:				
				Time Taken to fill 25ltr					
07/08/20	Date		Flow Rate I/min	container(mins)					
		(Pumping from water column)	~5.5	3.5+	Reading 1:				
		(Pumping from water column)	~5	4	Reading 2:				
		(Flow slows after pumping c.50L)	0.9	2.2	Reading 3:				
			5.75		Nr of Containers filled:				
		litres	115	-	Total Volume Purged:				
		in the state of th	115	L	Total Volume Fulgeu.				
Redox Potential	Dissolved Oxygen	Electrical Conductivity	₽H	Temperature					
ç	0.39	21.11	6.57	19.36 to 17.43	Reading 1				
7	0.42	22.57	6.69	15.36	Reading 2				
5	0.42	21.64	6.81	13.79	Reading 3				
2	0.42	21.28	6.83	13.67	Reading 4				
7	0.41	25.4	6.48	15.34	Reading 5				
	0.41	24.31	6.55	13.48	Reading 6				
٤	0.41	20.23	6.62	13.76	Reading 7				
	0.41	21.47	6.34	13.55	Reading 8				

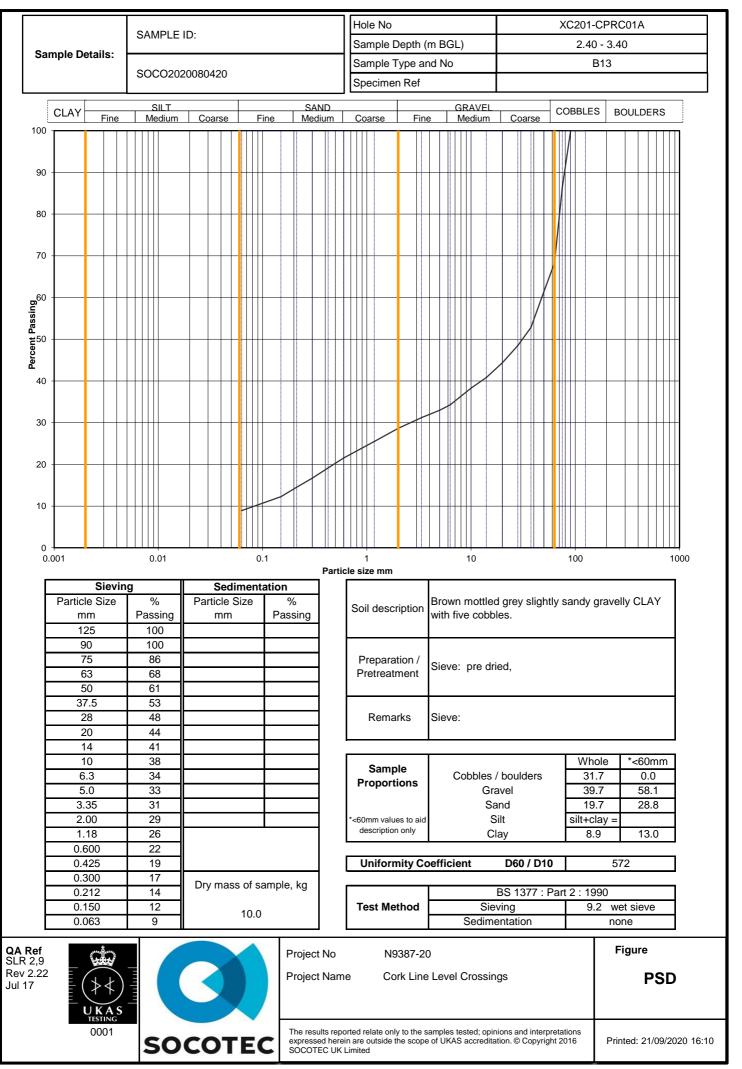

Appendix G Geotechnical Soil Laboratory Test Results

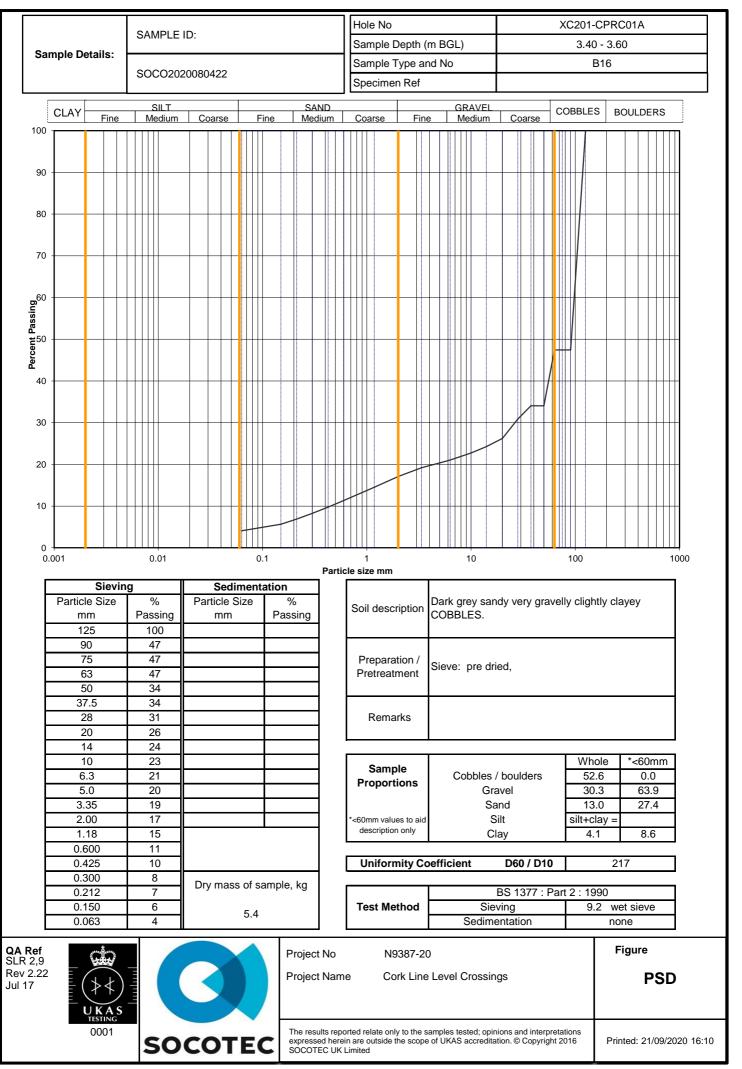

INDEX PROPERTIES - SUMMARY OF RESULTS

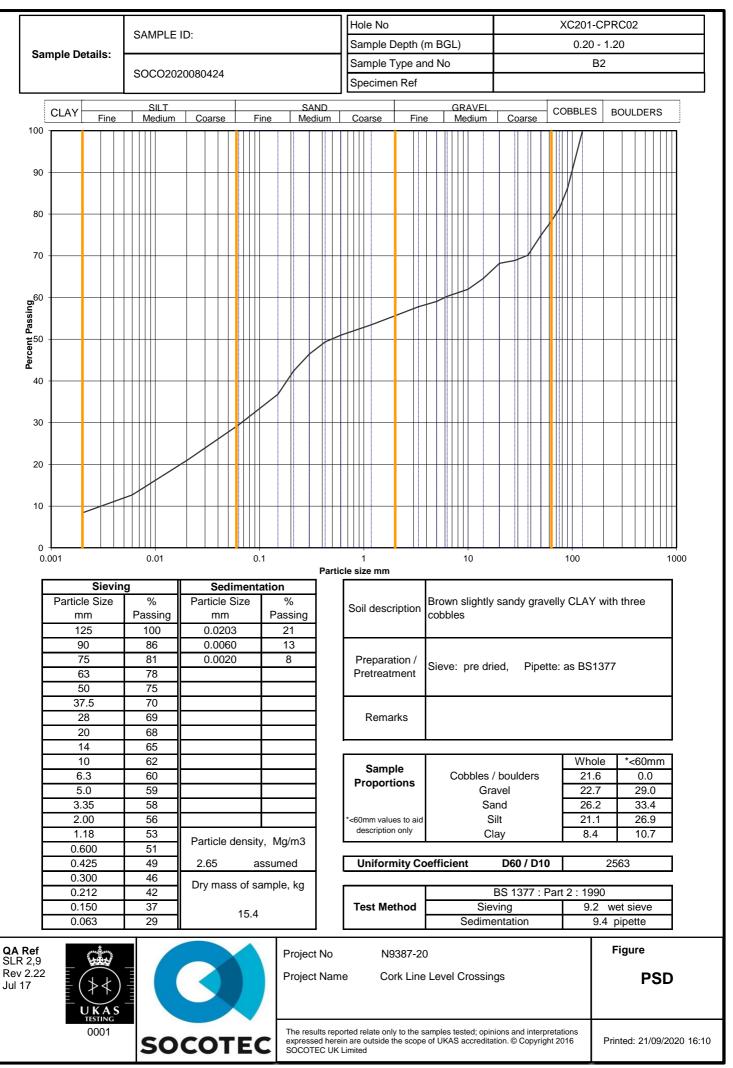

		Samp	le			р	p_{d}	w	< 425	W_{L}	W _P	ŀΡ	p_{s}	
Hole No.	NI-	Dept	h (m)	6 mm a	Soil Description				µm sieve					Remarks
	No.	from	to	type		Mg	/m3	%	%	%	%		Mg/m3	
XC201-CP01	3	0.20	1.20	D	Brown slightly gravelly sandy silty CLAY.				80 s	33 a	21	12		
XC201-CP01A	5	1.20	2.00	D	Brown slightly sandy gravelly CLAY.				74 s	23 a	15	8		
XC201-CP02	3	0.20	1.20	D	Brown mottled grey slightly gravelly sandy silty CLAY.				66 s	23 a	12	11		
XC201-CP02	6	1.20	2.00	D	Brown slightly sandy gravelly CLAY.				68 s	21 a	15	6		
XC201-CPRC01	6	0.50	1.20	D	Brown mottled grey slightly gravelly sandy silty CLAY.				70 s	24 a	16	8		
XC201-CPRC01	8	1.20	2.00	D	Brown mottled grey sandy gravelly CLAY.			8.6						
XC201-CPRC01	11	2.00	3.00	D	Brown slightly sandy gravelly CLAY.				59 s	22 a	13	9		
XC201-CPRC01A	7	1.20	2.00	D	Brown slightly sandy gravelly silty CLAY.				51 s	23 b	14	9		
XC201-CPRC01A	12	2.20	2.40	D	Brown slightly sandy gravelly CLAY.			12						
XC201-CPRC01A	14	2.40	3.40	D	Greyish brown slightly sandy slightly clayey GRAVEL.						NP			
XC201-CPRC02	6	1.20	2.00	D	Brown slightly sandy gravelly silty CLAY.			9.2						
XC201-CPRC02	11	2.50	2.80	D	Brown slightly sandy slightly gravelly silty CLAY.			8.5						
General notes: Key : p bulk density, linear pd dry density w moisture content * test carried out to BS E	WL a b	sts carried Liquid lin 4 point cc 1 point cc	nit one test	1377 : 1	990 unless annotated otherwise. See Remarks for WP Plastic limit NP non - plastic IP Plasticity Index	further d	<425un n from s sieve	n prepara 1 natural s ed specir pved by h	soil nen		-g = ga	<i>rticle de</i> s jar nall pykr		
QA Ref SLR 1 Rev 2.95 Mar 17		(Project No N9387-20 Project Name Cork Line Le	vel Cro	ossing	s			Fi	gure	INC	X
		C		E	The results reported relate only to the sample expressed herein are outside the scope of U SOCOTEC UK Limited	es testeo KAS acc	d; opinio creditatio	ns and in n. © Cop	terpretat yright 20	ions)17		Printee	d: 21/09	/2020 16:08

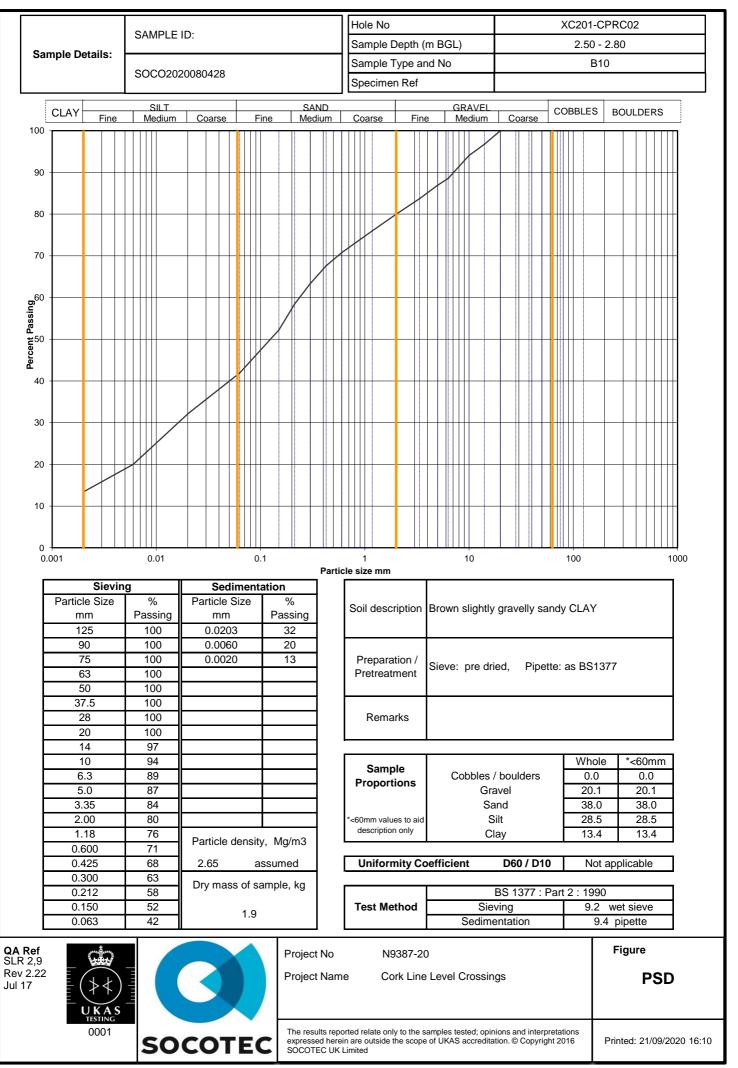

INDEX PROPERTIES - SUMMARY OF RESULTS

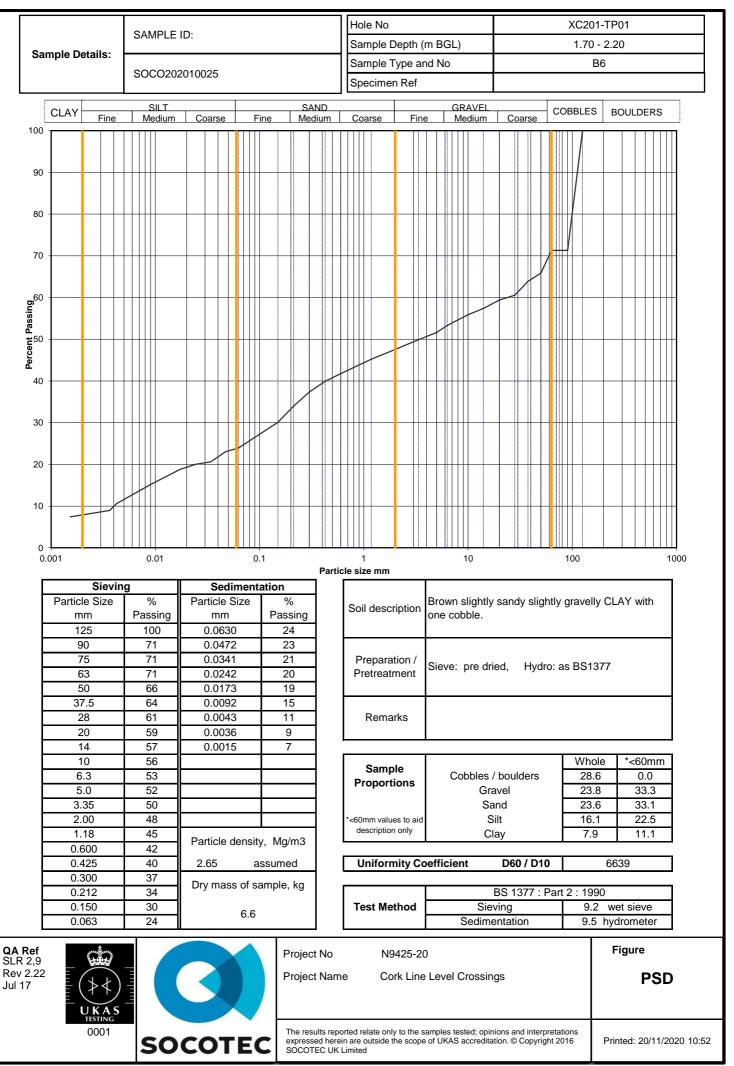

		Samp	le			р	p_{d}	W	< 425	WL	WP	ŀР	p_{s}	
Hole No.	No.	Dept	h (m)	t/00	Soil Description				µm sieve	_				Remarks
	INO.	from	to	type		Mg	/m3	%	%	%	%		Mg/m3	
XC201-TP01	1	0.50	1.00	D	Brown slightly sandy gravelly CLAY.			15	61 s	25 a	15	10		
XC201-TP01	9	2.20	2.50	D	Brown slightly sandy slightly gravelly CLAY			7.2	67 s	22 a	12	10		
XC201-TP02	7	1.50	2.00	D	Brown slightly sandy slightly gravelly CLAY.			6	62 s	22 a	13	9		
XC201-TP02	9	2.60	3.10	D	Brown slightly sandy gravelly silty CLAY with one cobble			5.3	52 s	22 a	12	10		
XC201-TP03	7	1.40	1.90	D	Brown slightly sandy gravelly CLAY with one cobble			6.2	35 s	23 b	13	10		
XC201-TP03	12	3.00	3.50	D	Brown slightly sandy gravelly silty CLAY with one cobble			4.7	42 s	22 b	13	9		
XC201-TP04	4	0.60	1.10	D	Brown slightly sandy gravelly silty CLAY with one cobble			7.2	61 s	20 b	12	8		
XC201-TP04	9	2.00	2.50	D	Brown slightly sandy slightly gravelly CLAY.			9.2	63 s	23 a	14	9		
General notes: Key : p bulk density, linear pd dry density w moisture content * test carried out to BS EN	WL a b		nit one test	1377 : 1	990 unless annotated otherwise. See Remarks for WP Plastic limit NP non - plastic IP Plasticity Index	further c	<425un n from s sieve	n prepara natural s ed specir	soil nen	<u> </u>	-g = ga		nsity nometer	
QA Ref SLR 1 Rev 2.95 Mar 17		(Project No N9425-20 Project Name Cork Line Le	vel Cr		-			Fi	gure	INC	X
SOCOTEC The results reported relate only to the samples tested; opinions and interpretations expressed herein are outside the scope of UKAS accreditation. © Copyright 2017 SOCOTEC UK Limited Printed: 20/11/2024						/2020 10:50								

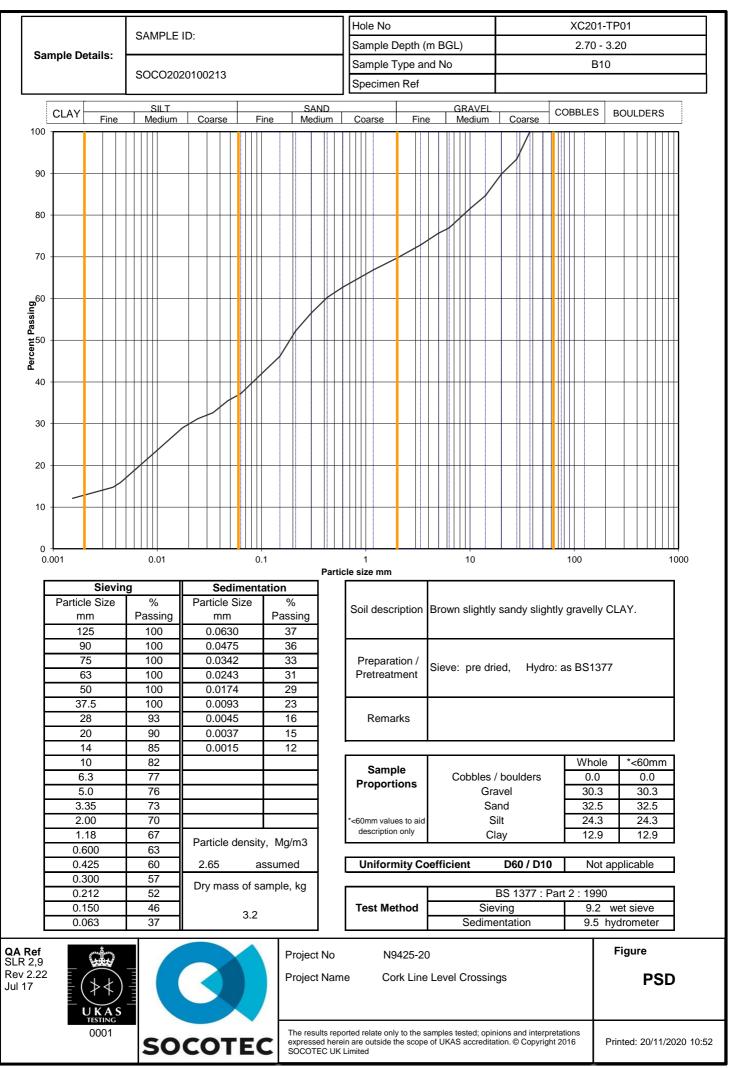


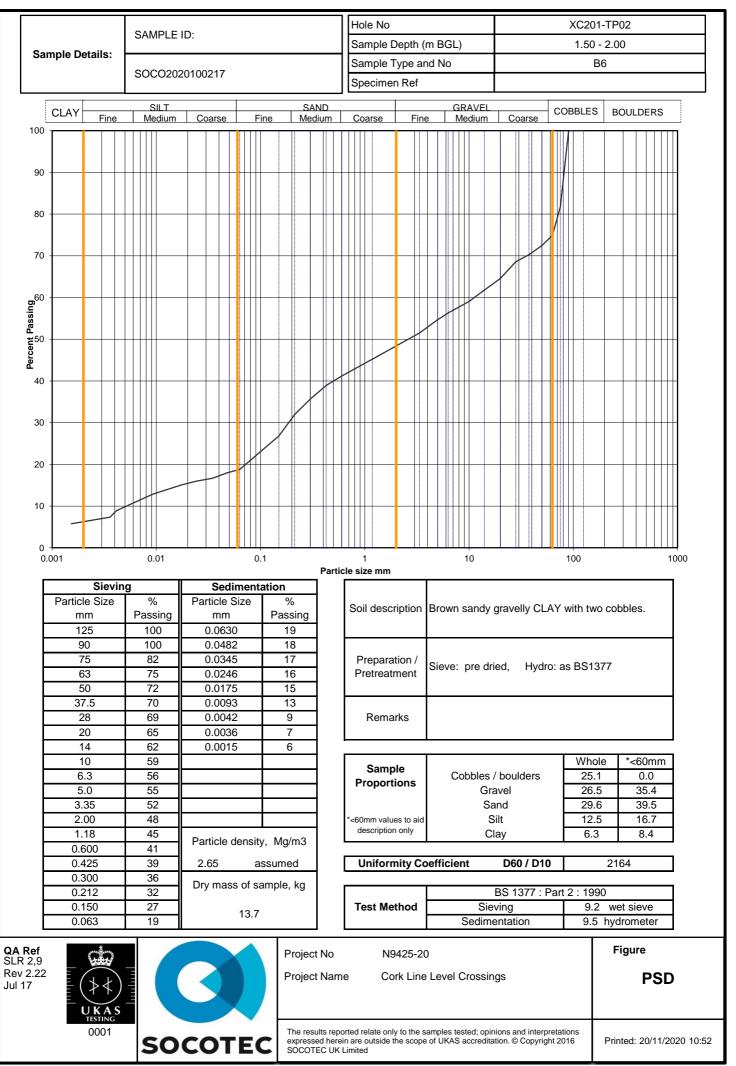


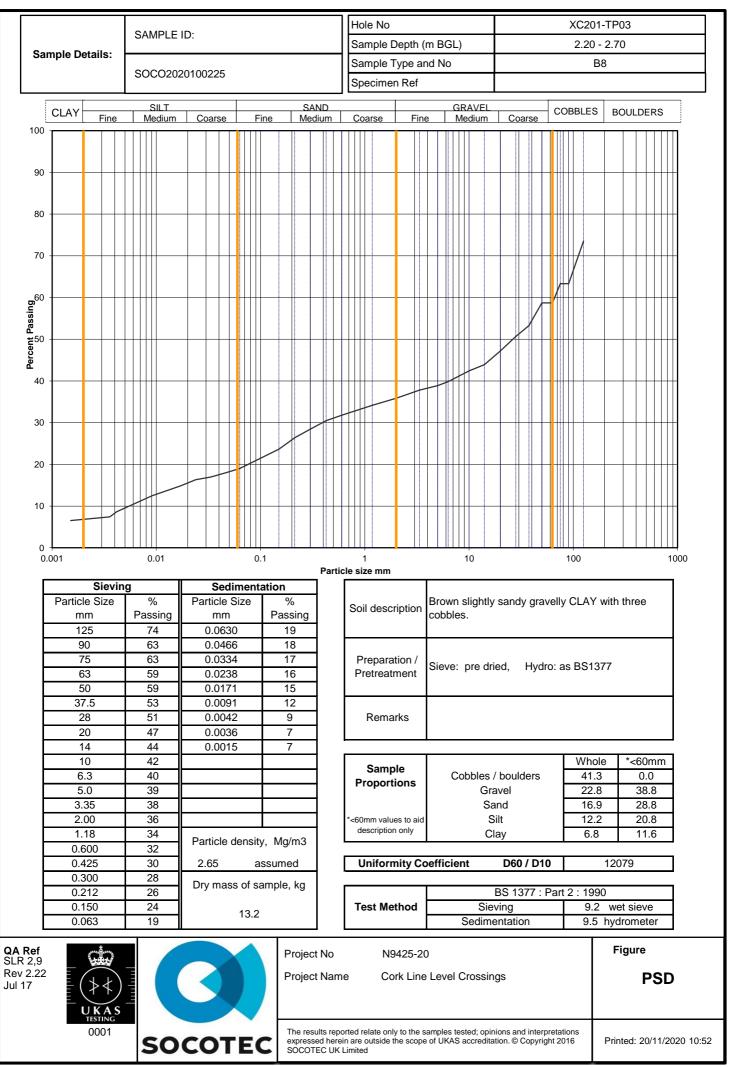


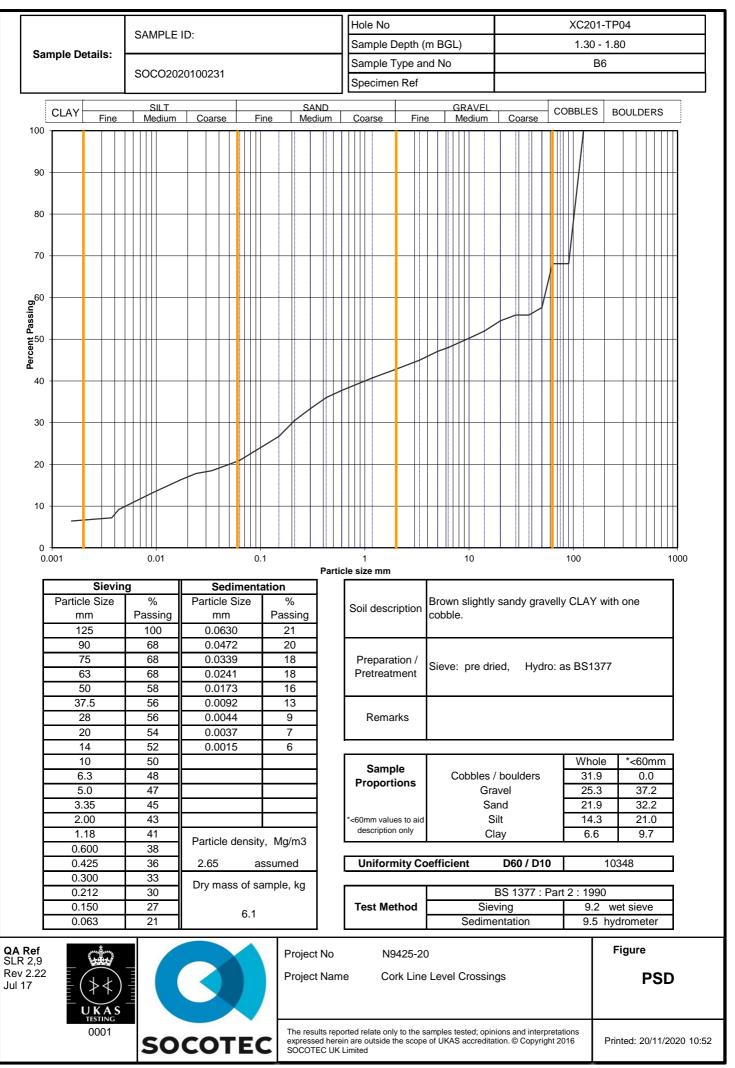


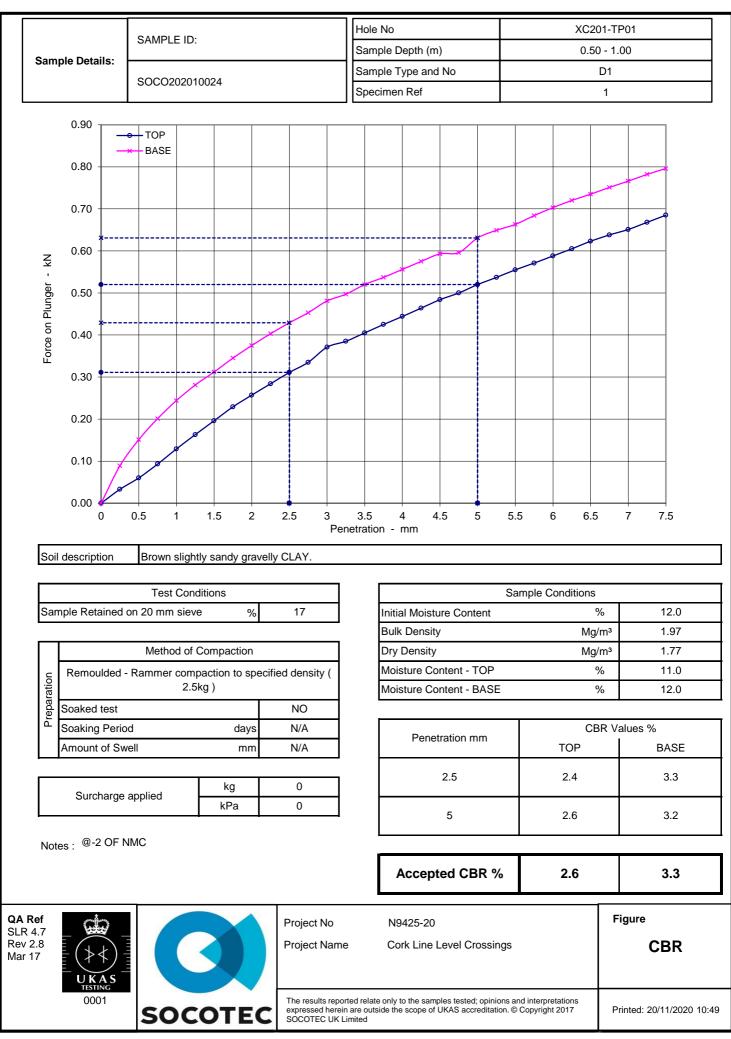


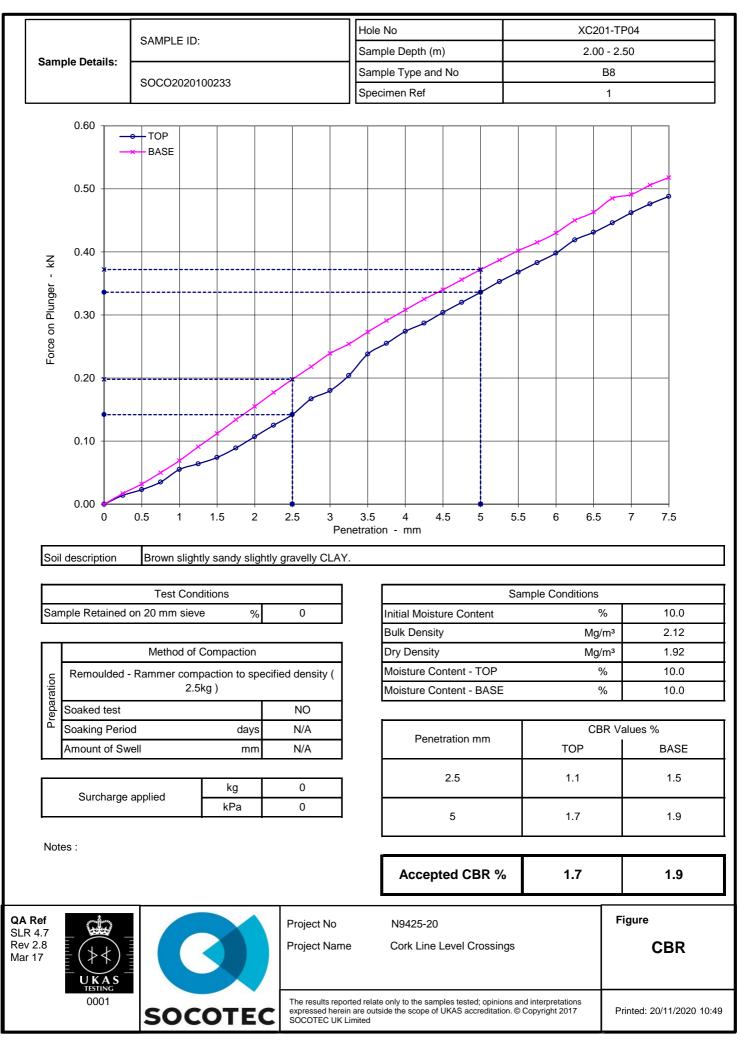












California Bearing Ratio (BS1377:1990:Part 4, section 7)

California Bearing Ratio (BS1377:1990:Part 4, section 7)

Certificate Number 20-14518

Client Socotec - Geotechnical Lab Askern Road Doncaster DN6 8DG

Our Reference 20-14518

Client Reference N9387-20

Order No (not supplied)

Contract Title Cork Line Level Crossing

Description 3 Soil samples.

Date Received 06-Aug-20

Date Started 06-Aug-20

Date Completed 12-Aug-20

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

Adam Fenwick Contracts Manager

12-Aug-20

Summary of Chemical Analysis Soil Samples

Our Ref 20-14518 Client Ref N9387-20 Contract Title Cork Line Level Crossing

	555116					
			Lab No	1708692	1708693	1708694
		Sa	ample ID	CPRC01A	CP01	CPRC02
			Depth	3.40-3.60	0.20-1.20	2.80-3.30
		Other ID		D17	B2	D13
		Sample Type		SOIL	SOIL	SOIL
		Sampling Date		05/08/2020	05/08/2020	05/08/2020
		Sampling Time		n/s	n/s	n/s
Test	Method	LOD	Units			
Metals						
Magnesium Aqueous Extract	DETSC 2076*	10	mg/l	19	< 10	< 10
Inorganics						
рН	DETSC 2008#		рН	7.9	7.7	8.4
Ammonia Aqueous Extract as N	DETSC 2119	10	mg/l	< 10	< 10	< 10
Chloride Aqueous Extract	DETSC 2055	1	mg/l	14	11	14
Nitrate Aqueous Extract as NO3	DETSC 2055	1	mg/l	< 1.0	6.4	< 1.0
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	970	280	32
Sulphur as S, Total	DETSC 2320	0.01	%	0.12	0.04	0.02
Sulphate as SO4, Total	DETSC 2321#	0.01	%	0.22	0.10	0.04

Inonpropriate

Information in Support of the Analytical Results

Our Ref 20-14518 Client Ref N9387-20 Contract Cork Line Level Crossing

Containers Received & Deviating Samples

	Date		exceeded for	container for
Sample ID	Sampled	Containers Received	tests	tests
XC201-CPRC01A 3.40-3.60 SOIL	05/08/20	PT 1L		
XC201-CP01 0.20-1.20 SOIL	05/08/20	PT 1L		
XC201-CPRC02 2.80-3.30	05/08/20	PT 1L		
	XC201-CPRC01A 3.40-3.60 SOIL XC201-CP01 0.20-1.20 SOIL XC201-CPRC02 2.80-3.30	Sample ID Sampled XC201-CPRC01A 3.40-3.60 05/08/20 SOIL	Sample ID Sampled Containers Received XC201-CPRC01A 3.40-3.60 05/08/20 PT 1L SOIL 05/08/20 PT 1L XC201-CP01 0.20-1.20 05/08/20 PT 1L SOIL 05/08/20 PT 1L SOIL 05/08/20 PT 1L SOIL 05/08/20 PT 1L SOIL 05/08/20 PT 1L	Date exceeded for Sample ID Sampled Containers Received tests XC201-CPRC01A 3.40-3.60 05/08/20 PT 1L

Key: P-Plastic T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425μm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.

The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

End of Report

Certificate Number 20-17748

Client Socotec INFRASTRUCTURE SERVICES Unit 15 Crosby Yard Wildmill Bridgend CF31 1JZ

- *Our Reference* 20-17748
- Client Reference N9387
 - Order No N20-O-2186
 - Contract Title Corkline Level Crossing
 - Description One Soil sample.
 - Date Received 15-Sep-20
 - Date Started 15-Sep-20
- Date Completed 21-Sep-20
- Test Procedures Identified by prefix DETSn (details on request).
 - *Notes* Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

Adam Fenwick Contracts Manager

Page 1 of 3

21-Sep-20

Summary of Chemical Analysis Soil Samples

Our Ref 20-17748 Client Ref N9387 Contract Title Corkline Level Crossing

			Lab No	1726717
				CX201-
		S	ample ID	CPRC02
			Depth	1.20-2.00
			Other ID	D6
		Sam	ple Type	SOIL
		Samp	ing Date	14/09/2020
		Sampl	ing Time	n/s
Test	Method	LOD	Units	
Inorganics				
рН	DETSC 2008#		рН	8.3
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	19
Sulphur as S, Total	DETSC 2320	0.01	%	0.02
Sulphate as SO4, Total	DETSC 2321#	0.01	%	0.05

Information in Support of the Analytical Results

Our Ref 20-17748 Client Ref N9387 Contract Corkline Level Crossing

Containers Received & Deviating Samples

		Date		Holding time exceeded for	Inappropriate container for
Lab No	Sample ID	Sampled	Containers Received	tests	tests
1726717	CX201-CPRC02 1.20-2.00 SOIL	14/09/20	PT 1L		
be deviating Deviating S etc are devi no sampled	at be held responsible for the i g. Deviating Sample criteria ar amples'. All samples received iating due to the reasons state I date (soils) or date+time (wa	e based on Bri are listed abov ed. This means ters) has been	nples received whereby the laboratory did not undertake the sampling tish and International standards and laboratory trials in conjunction w /e. However, those samples that have additional comments in relation that the analysis is accredited where applicable, but results may be co supplied then samples are deviating. However, if you are able to supp here specific hold times are not exceeded and where the container su	ith the UKAS note 'G to hold time, inappo mpromised due to s ly a sampled date (a	uidance on opriate containers ample deviations.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.

The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28° C +/- 2° C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

End of Report

Appendix H Environmental Laboratory Test Results

Environmental Chemistry SOCOTEC UK Ashby Rd, Bretby, Burton-on-Trent, UK DE15 0YZ

Certificate of Analysis

Project No: 20071478 Client: OCB Geotechnical Limited

Quote Number: BEC200710078 Project Reference: Irish Rail - Cork Line Site Name: 19-135

Contact: Ian Holley

Address: Unit 1 Carrigogna Midleton County Cork

Post Code: Ireland

E-Mail: iholley@ocbgeotechnical.com

Phone No: 021 4638474

Number of Samples Received: 3

Date Received: 30/07/2020

Analysis Date: 11/08/2020

Date Issued: 11/08/2020

Job Status: Complete

Report Type: Final Version 01

This report supersedes any versions previously issued by the laboratory

Meer

Authorised by the Operations Manager Becky Batham

Account Manager Martin Elliott-Palmer

Client: OCB Geotechnical Limited Project Name: 19-135 Project No: 20071478 Date Issued: 11/08/2020

Samples Analysed

Sample Reference	Text ID	Sample Date	Sample Type
XC201-TP04-1-ES-0.05-0.05	20071478-001	03/07/2020 17:00:00	SOLID
XC201-TP04-2-ES-0.50-0.50	20071478-003	03/07/2020 18:00:00	SOLID
XC201-TP04-5-ES-1.00-1.00	20071478-005	03/07/2020 19:00:00	SOLID

Client: OCB Geotechnical Limited

Project Name: 19-135

				Project ID	20071478					
			Sample ID Customer ID		00)1	00	3	005	
					XC201-TP04-1	-ES-0.05-0.05	XC201-TP04-2	-ES-0.50-0.50	XC201-TP04-5-ES-1.0	
				Sample Type	LPL	SOLID	LPL	SOLID	ĹPĹ	
				Sampling Date	03/07/2020	03/07/2020	03/07/2020	03/07/2020	03/07/2020	
Analysis	Method Code	MDL	Units	Accred						
>C6-C8 Aliphatic	GROHSA/BTEXHSA	0.1	mg/l	N	<0.100		<0.100		<0.100	
>C7-C8 Aromatic	GROHSA/BTEXHSA	0.005	mg/l	N	<0.005		< 0.005		<0.005	
>C8-C10 Aliphatic	GROHSA/BTEXHSA	0.1	 mg/l	N	<0.100		<0.100		<0.100	
>C8-C10 Aromatic	GROHSA/BTEXHSA	0.02	mg/l	N	<0.020		<0.020		<0.020	
C5-C6 Aliphatic	GROHSA/BTEXHSA	0.1	 mg/l	N	<0.100		<0.100		<0.100	
C5-C7 Aromatic	GROHSA/BTEXHSA	0.005	mg/l	N	<0.005		< 0.005		<0.005	
Total GRO	GROHSA/BTEXHSA	0.1	mg/l	U	<0.100		<0.100		<0.100	
Free Cyanide	SFAPI	0.02	mg/l	U	<0.02		< 0.02		<0.02	
Arsenic as As	ICPMSW (Dissolved)	0.001	mg/l	U	<0.001		< 0.001		< 0.001	
Cadmium as Cd	ICPMSW (Dissolved)	0.00002	mg/l	U	<0.00002		< 0.00002		<0.00002	
Total Chromium as Cr	ICPMSW (Dissolved)	0.001	mg/l	U	<0.001		< 0.001		<0.001	
Copper as Cu	ICPMSW (Dissolved)	0.001	mg/l	U	0.001		< 0.001		<0.001	
Lead as Pb	ICPMSW (Dissolved)	0.001	mg/l	U	<0.001		< 0.001		<0.001	
Mercury as Hg	ICPMSW (Dissolved)	0.00003	mg/l	U	< 0.00003		< 0.00003		<0.00003	
Nickel as Ni	ICPMSW (Dissolved)	0.001	mg/l	U	<0.001		< 0.001		<0.001	
Selenium as Se	ICPMSW (Dissolved)	0.001	mg/l	U	<0.001		< 0.001		<0.001	
Vanadium as V	ICPMSW (Dissolved)	0.001	mg/l	U	< 0.001		0.002		< 0.001	
Zinc as Zn	ICPMSW (Dissolved)	0.002	mg/l	U	< 0.002		0.004		< 0.002	
Barium as Ba	ICPWATVAR (Dissolved)	0.01	mg/l	U	<0.01		< 0.01		< 0.01	
Beryllium as Be	ICPWATVAR (Dissolved)	0.01	mg/l	N	< 0.01		< 0.01		<0.01	
Boron as B	ICPWATVAR (Dissolved)	0.01	mg/l	U	< 0.01		< 0.01		< 0.01	
Benzene	BTEXHSA	5	μg/l	N	<5		<5		<5	
Ethylbenzene	BTEXHSA	5	μg/l	N	<5		<5		<5	
m/p-Xylene	BTEXHSA	10	μg/l	N	<10		<10		<10	
o-Xylene	BTEXHSA	5	μg/Ι	N	<5		<5		<5	

Client: OCB Geotechnical Limited

Project Name: 19-135

				Project ID		20071478
				Sample ID	005	
				Customer ID	XC201-TP04-5-ES-1.00	
				Sample Type	SOLID	
				Sampling Date	03/07/2020	
Analysis	Method Code	MDL	Units	Accred		
>C6-C8 Aliphatic	GROHSA/BTEXHSA	0.1	mg/l	N		
>C7-C8 Aromatic	GROHSA/BTEXHSA	0.005	mg/l	N		
>C8-C10 Aliphatic	GROHSA/BTEXHSA	0.1	mg/l	N		
>C8-C10 Aromatic	GROHSA/BTEXHSA	0.02	mg/l	N		
C5-C6 Aliphatic	GROHSA/BTEXHSA	0.1	mg/l	N		
C5-C7 Aromatic	GROHSA/BTEXHSA	0.005	mg/l	N		
Total GRO	GROHSA/BTEXHSA	0.1	mg/l	U		
Free Cyanide	SFAPI	0.02	mg/l	U		
Arsenic as As	ICPMSW (Dissolved)	0.001	mg/l	U		
Cadmium as Cd	ICPMSW (Dissolved)	0.00002	mg/l	U		
Total Chromium as Cr	ICPMSW (Dissolved)	0.001	mg/l	U		
Copper as Cu	ICPMSW (Dissolved)	0.001	mg/l	U		
Lead as Pb	ICPMSW (Dissolved)	0.001	mg/l	U		
Mercury as Hg	ICPMSW (Dissolved)	0.00003	mg/l	U		
Nickel as Ni	ICPMSW (Dissolved)	0.001	mg/l	U		
Selenium as Se	ICPMSW (Dissolved)	0.001	mg/l	U		
Vanadium as V	ICPMSW (Dissolved)	0.001	mg/l	U		
Zinc as Zn	ICPMSW (Dissolved)	0.002	mg/l	U		
Barium as Ba	ICPWATVAR (Dissolved)	0.01	mg/l	U		
Beryllium as Be	ICPWATVAR (Dissolved)	0.01	mg/l	N		
Boron as B	ICPWATVAR (Dissolved)	0.01	mg/l	U		
Benzene	BTEXHSA	5	µg/l	N		
Ethylbenzene	BTEXHSA	5	µg/l	N		
m/p-Xylene	BTEXHSA	10	µg/l	N		
o-Xylene	BTEXHSA	5	µg/l	N		

Client: OCB Geotechnical Limited

Project Name: 19-135

Analysis Results

				Project ID			20071478		
				Sample ID	0	01	0	03	005
				Customer ID	XC201-TP04-	1-ES-0.05-0.05	XC201-TP04-2	2-ES-0.50-0.50	XC201-TP04-5-ES-1.00
				Sample Type	LPL	SOLID	LPL	SOLID	LPL
				Sampling Date	03/07/2020	03/07/2020	03/07/2020	03/07/2020	03/07/2020
Analysis	Method Code	MDL	Units	Accred					
Toluene	BTEXHSA	5	µg/l	N	<5		<5		<5
Acenaphthene	PAHMSW	0.01	µg/l	U	0.06		0.12		<0.02
Acenaphthylene	PAHMSW	0.01	µg/l	U	<0.02		<0.02		<0.02
Anthracene	PAHMSW	0.01	µg/l	U	<0.02		< 0.02		< 0.02
Benzo[a]anthracene	PAHMSW	0.01	µg/l	U	0.08		<0.02		< 0.02
Benzo[a]pyrene	PAHMSW	0.01	µg/l	U	< 0.02		< 0.02		< 0.02
Benzo[b]fluoranthene	PAHMSW	0.01	µg/l	U	<0.02		<0.02		< 0.02
Benzo[g,h,i]perylene	PAHMSW	0.01	µg/l	U	< 0.02		< 0.02		< 0.02
Benzo[k]fluoranthene	PAHMSW	0.01	µg/l	U	< 0.02		< 0.02		< 0.02
Chrysene	PAHMSW	0.01	µg/l	U	< 0.02		< 0.02		< 0.02
Dibenzo[a,h]anthracene	PAHMSW	0.01	µg/l	U	<0.02		<0.02		< 0.02
Fluoranthene	PAHMSW	0.01	µg/l	U	0.19		< 0.02		< 0.02
Fluorene	PAHMSW	0.01	µg/l	U	0.04		0.06		< 0.02
Indeno[1,2,3-cd]pyrene	PAHMSW	0.01	µg/l	U	<0.02*		<0.02*		< 0.02*
Naphthalene	PAHMSW	0.01	µg/l	U	0.28		0.21		0.17
Phenanthrene	PAHMSW	0.01	µg/l	U	0.18		0.04		< 0.02
Pyrene	PAHMSW	0.01	µg/l	U	0.29		0.02		< 0.02
Total PAH 16	PAHMSW	0.16	µg/l	U	<1.25		<0.62		<0.42
>C10-C12 (Aliphatic)	TPHFID (Aliphatic)	0.01	mg/l	U	16.5		2.06		0.44
>C12-C16 (Aliphatic)	TPHFID (Aliphatic)	0.01	mg/l	U	<0.01		< 0.02		<0.02
>C16-C21 (Aliphatic)	TPHFID (Aliphatic)	0.01	mg/l	U	5.21		0.64		0.14
>C21-C35 (Aliphatic)	TPHFID (Aliphatic)	0.01	mg/l	U	4.31		0.62		0.14
>C35-C44 (Aliphatic)	TPHFID (Aliphatic)	0.01	mg/l	N	0.04		0.11		<0.02
Total TPH (Aliphatic)	TPHFID (Aliphatic)	0.01	mg/l	U	<0.01		0.11		< 0.02
>C10-C12 (Aromatic)	TPHFID (Aromatic)	0.01	mg/l	U	0.02		< 0.02		<0.02

Client: OCB Geotechnical Limited

Project Name: 19-135

				Project ID		20071478
				Sample ID	005	
				Customer ID	XC201-TP04-5-ES-1.00	
				Sample Type	SOLID	
				Sampling Date	03/07/2020	
Analysis	Method Code	MDL	Units	Accred		
Toluene	BTEXHSA	5	µg/l	N		
Acenaphthene	PAHMSW	0.01	µg/l	U		
Acenaphthylene	PAHMSW	0.01	µg/l	U		
Anthracene	PAHMSW	0.01	µg/l	U		
Benzo[a]anthracene	PAHMSW	0.01	µg/l	U		
Benzo[a]pyrene	PAHMSW	0.01	µg/l	U		
Benzo[b]fluoranthene	PAHMSW	0.01	µg/l	U		
Benzo[g,h,i]perylene	PAHMSW	0.01	µg/l	U		
Benzo[k]fluoranthene	PAHMSW	0.01	µg/l	U		
Chrysene	PAHMSW	0.01	µg/l	U		
Dibenzo[a,h]anthracene	PAHMSW	0.01	µg/l	U		
Fluoranthene	PAHMSW	0.01	µg/l	U		
Fluorene	PAHMSW	0.01	µg/l	U		
Indeno[1,2,3-cd]pyrene	PAHMSW	0.01	µg/l	U		
Naphthalene	PAHMSW	0.01	µg/l	U		
Phenanthrene	PAHMSW	0.01	µg/l	U		
Pyrene	PAHMSW	0.01	µg/l	U		
Total PAH 16	PAHMSW	0.16	µg/l	U		
>C10-C12 (Aliphatic)	TPHFID (Aliphatic)	0.01	mg/l	U		
>C12-C16 (Aliphatic)	TPHFID (Aliphatic)	0.01	mg/l	U		
>C16-C21 (Aliphatic)	TPHFID (Aliphatic)	0.01	mg/l	U		
>C21-C35 (Aliphatic)	TPHFID (Aliphatic)	0.01	mg/l	U		
>C35-C44 (Aliphatic)	TPHFID (Aliphatic)	0.01	mg/l	N		
Total TPH (Aliphatic)	TPHFID (Aliphatic)	0.01	mg/l	U		
>C10-C12 (Aromatic)	TPHFID (Aromatic)	0.01	mg/l	U		

Client: OCB Geotechnical Limited

Project Name: 19-135

				Project ID	20071478					
				Sample ID	0	01	0	03	005	
			Customer ID		XC201-TP04-	1-ES-0.05-0.05	XC201-TP04-	2-ES-0.50-0.50	XC201-TP04-5-ES-1.00	
				Sample Type	LPL	SOLID	LPL	SOLID	LPL	
				Sampling Date	03/07/2020	03/07/2020	03/07/2020	03/07/2020	03/07/2020	
Analysis	Method Code	MDL	Units	Accred						
>C12-C16 (Aromatic)	TPHFID (Aromatic)	0.01	mg/l	U	<0.01		<0.02		< 0.02	
>C16-C21 (Aromatic)	TPHFID (Aromatic)	0.01	mg/l	U	0.03		< 0.02		< 0.02	
>C21-C35 (Aromatic)	TPHFID (Aromatic)	0.01	mg/l	U	4.20		0.55		0.14	
>C35-C44 (Aromatic)	TPHFID (Aromatic)	0.01	mg/l	N	0.18		< 0.02		< 0.02	
Total TPH (Aromatic)	TPHFID (Aromatic)	0.01	mg/l	U	4.29		0.56		0.16	
Benzene	VOCHSAW	1	µg/l	N	<1		<1		<1	
Ethylbenzene	VOCHSAW	1	µg/l	N	<1		<1		<1	
m and p-Xylene	VOCHSAW	1	µg/l	N	<1		<1		<1	
MTBE	VOCHSAW	1	µg/l	N	<1		<1		<1	
o-Xylene	VOCHSAW	1	µg/l	N	<1		<1		<1	
Toluene	VOCHSAW	1	µg/l	N	<1		<1		<1	
Equivalent Weight of Dry Material (kg)	Leachate Preparation CEN 10:1		kg	N		0.090		0.090		
Fraction above 4mm (%)	Leachate Preparation CEN 10:1		%	N		0		0		
Fraction of non-crushable material (%)	Leachate Preparation CEN 10:1		%	N		0		0		
Volume of Water for 10:1 Leach (ltr)	Leachate Preparation CEN 10:1		I	N		0.865		0.893		
Weight of Sample Leached (kg)	Leachate Preparation CEN 10:1		kg	N		0.125		0.097		

Client: OCB Geotechnical Limited

Project Name: 19-135

				Project ID		20071478
				Sample ID	005	
				Customer ID	XC201-TP04-5-ES-1.00	
				Sample Type	SÓLÌD	
				Sampling Date	03/07/2020	
Analysis	Method Code	MDL	Units	Accred		
>C12-C16 (Aromatic)	TPHFID (Aromatic)	0.01	mg/l	U		
>C16-C21 (Aromatic)	TPHFID (Aromatic)	0.01	mg/l	U		
>C21-C35 (Aromatic)	TPHFID (Aromatic)	0.01	mg/l	U		
>C35-C44 (Aromatic)	TPHFID (Aromatic)	0.01	mg/l	N		
Total TPH (Aromatic)	TPHFID (Aromatic)	0.01	mg/l	U		
Benzene	VOCHSAW	1	µg/l	N		
Ethylbenzene	VOCHSAW	1	µg/l	N		
m and p-Xylene	VOCHSAW	1	µg/l	N		
MTBE	VOCHSAW	1	µg/l	N		
o-Xylene	VOCHSAW	1	µg/l	N		
Toluene	VOCHSAW	1	µg/l	N		
Equivalent Weight of Dry Material (kg)	Leachate Preparation CEN 10:1		kg	N	0.090	
Fraction above 4mm (%)	Leachate Preparation CEN 10:1		%	N	30.2	
Fraction of non-crushable material (%)	Leachate Preparation CEN 10:1		%	N	0	
Volume of Water for 10:1 Leach (ltr)	Leachate Preparation CEN 10:1		I	N	0.891	
Weight of Sample Leached (kg)	Leachate Preparation CEN 10:1		kg	N	0.099	
						÷

Additional Report Notes

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report
TPHFID-SI	001,003,005 ,007	Due to a limited amount of sample, a lower volume was used to complete the analysis. This resulted in a raised detection limit for these samples.
PAHMSW	001,003,005 ,007	The Primary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. However the remaining data gives the Laboratory confidence that the test has performed satisfactorily and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation, where applicable, from the affected analytes (Indeno[1,2,3-cd[pyrene) . These circumstances should be taken into consideration when utilising the data.
PAHMSW	001,003,005 ,007	Due to a limited amount of sample, a lower volume was used to complete the analysis. This resulted in a raised detection limit for these samples.

LIMS-F002 - Report Notes

	imited							
	Project Name: 19-135	5						
SOCOTEC	3							
	Date Issued: 11/08/2020							
Deviating Sample Report Sample Reference Text ID	Reported Name	Incorrect Container	Incorrect Label	Headspace	Incorrect/No Preservative	No Sampling Date	Holding Time	Handling Time
				Т	-1	2		Т
Analysis Method		_			1	•		
<u>Analysis</u>		Analysis Method						
BTEXHSA	ORGANIC	UNFILTERED						
GROHSA	ORGANIC	UNFILTERED						
ICPMSW (Dissolved)	METALS	FILTERED						
ICPWATVAR (Dissolved)	METALS	FILTERED						
Leachate Preparation CEN 10:1	PHYS	As Received						
PAHMSW	ORGANIC	FILTERED						
SFAPI	INORGANIC	FILTERED						
TPHFID (Aliphatic)	ORGANIC	FILTERED						
TPHFID (Aromatic)	ORGANIC	FILTERED						

ORGANIC

UNFILTERED

VOCHSAW

Date Issued: 11/08/2020

Additional Information

This report refers to samples as received, and SOCOTEC Uk Ltd takes no responsibility for accuracy or competence of sampling by others.

Results within this report relate only to the samples tested.

In the accreditation column of analysis report the codes are as follows:

- U = UKAS accredited analysis
- M = MCERT accredited analysis
- N = Unaccredited analysis

Any units marked with ^ signify results are reported on a dry weight basis of 105° c

All Air Dried and Ground Samples (ADG) are oven dried at less than 35° c.

This report shall not be reproduced except in full and with approval from the laboratory.

Opinions and interpretations given are outside the scope of our UKAS accreditation.

Any samples marked with * are not covered by our scope of UKAS accreditation, if applicable further report notes have been added.

Any solid samples where the Major Constituents are not one of the following (Sand, Silt, Clay, Made Ground) are not one of our accredited matrix types.

Any samples marked with ‡ have had MCERTS accreditation removed for this result

Any samples marked with a tick in the deviant table is deviant for the specific reason.

Any samples reported as IS, NA, ND mean the following:

- IS = Insufficient Sample to complete analysis
- NA = Sample is not amenable for the required analysis
- ND = Results cannot be determined

Our deviating sample report does not include deviancy information for Subcontracted analysis. Please see the report from the Subcontracted lab for information regarding any deviancies for this analysis.

End of Certificate of Analysis

Chemistry to deliver results Chemtest Ltd. Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	20-15813-1		
Initial Date of Issue:	29-Jun-2020		
Client	Environmental Laboratory Services Ltd		
Client Address:	Acorn Business Campus Mahon Industrial Park Blackrock Cork Ireland		
Contact(s):	Emer Kearney Results		
Project	Soil Samples		
Quotation No.:	Q20-19728	Date Received:	23-Jun-2020
Order No.:	7362	Date Instructed:	23-Jun-2020
No. of Samples:	2		
Turnaround (Wkdays):	5	Results Due:	29-Jun-2020
Date Approved:	29-Jun-2020		
Approved By:			
Manney			
Details:	Glynn Harvey, Technical Manager		

Results - Leachate

Client: Environmental Laboratory Services Ltd	Chemtest Job No.:			20-15813	20-15813		
Quotation No.: Q20-19728	Chemtest Sample ID.:			1020856	1020857		
Order No.: 7362	Client Sample Ref.:			182328/001	182328/002		
	Client Sample ID.:		1	2			
				Sampl	e Type:	SOIL	SOIL
Determinand	Accred.	SOP	Туре	Units	LOD		
рН	U	1010	10:1		N/A	8.8	8.7
Cyanide (Free)	U	1300	10:1	mg/l	0.050	< 0.050	< 0.050
Arsenic (Dissolved)	U	1450	10:1	µg/l	1.0	< 1.0	< 1.0
Boron (Dissolved)	U	1450	10:1	µg/l	20	< 20	< 20
Barium (Dissolved)	U	1450	10:1	µg/l	5.0	< 5.0	7.3
Beryllium (Dissolved)	U	1450	10:1	µg/l	1.0	< 1.0	< 1.0
Cadmium (Dissolved)	U	1450	10:1	µg/l	0.080	< 0.080	< 0.080
Chromium (Dissolved)	U	1450	10:1	µg/l	1.0	< 1.0	< 1.0
Copper (Dissolved)	U	1450	10:1	µg/l	1.0	1.9	< 1.0
Mercury (Dissolved)	U	1450	10:1	µg/l	0.50	< 0.50	< 0.50
Nickel (Dissolved)	U	1450	10:1	µg/l	1.0	2.3	1.9
Lead (Dissolved)	U	1450	10:1	µg/l	1.0	< 1.0	< 1.0
Selenium (Dissolved)	U	1450	10:1	µg/l	1.0	< 1.0	< 1.0
Vanadium (Dissolved)	U	1450	10:1	µg/l	1.0	< 1.0	< 1.0
Zinc (Dissolved)	U	1450	10:1	µg/l	1.0	< 1.0	< 1.0
Aliphatic TPH >C5-C6	N	1675	10:1	µg/l	0.10	[A] < 0.10	[A] < 0.10
Aliphatic TPH >C6-C8	N	1675	10:1	µg/l	0.10	[A] < 0.10	[A] < 0.10
Aliphatic TPH >C8-C10	N	1675	10:1	µg/l	0.10	[A] < 0.10	[A] < 0.10
Aliphatic TPH >C10-C12	N	1675	10:1	µg/l	0.10	[A] < 0.10	[A] < 0.10
Aliphatic TPH >C12-C16	N	1675	10:1	µg/l	0.10	[A] < 0.10	[A] < 0.10
Aliphatic TPH >C16-C21	N	1675	10:1	µg/l	0.10	[A] < 0.10	[A] < 0.10
Aliphatic TPH >C21-C35	N	1675	10:1	µg/l	0.10	[A] < 0.10	[A] < 0.10
Aliphatic TPH >C35-C44	N	1675	10:1	µg/l	0.10	[A] < 0.10	[A] < 0.10
Total Aliphatic Hydrocarbons	N	1675	10:1	µg/l	5.0	[A] < 5.0	[A] < 5.0
Aromatic TPH >C5-C7	N	1675	10:1	µg/l	0.10	[A] < 0.10	[A] < 0.10
Aromatic TPH >C7-C8	N	1675	10:1	µg/l	0.10	[A] < 0.10	[A] < 0.10
Aromatic TPH >C8-C10	N	1675	10:1	µg/l	0.10	[A] < 0.10	[A] < 0.10
Aromatic TPH >C10-C12	N	1675	10:1	µg/l	0.10	[A] < 0.10	[A] < 0.10
Aromatic TPH >C12-C16	N	1675	10:1	µg/l	0.10	[A] < 0.10	[A] < 0.10
Aromatic TPH >C16-C21	N	1675	10:1	µg/l	0.10	[A] < 0.10	[A] < 0.10
Aromatic TPH >C21-C35	N	1675	10:1	µg/l	0.10	[A] < 0.10	[A] < 0.10
Aromatic TPH >C35-C44	N	1680	10:1	µg/l	50.00	[A] < 50	[A] < 50
Total Aromatic Hydrocarbons	N	1675	10:1	µg/l	5.0	[A] < 5.0	[A] < 5.0
Total Petroleum Hydrocarbons	N	1675	10:1	µg/l	10	[A] < 10	[A] < 10
Benzene	U	1760	10:1	μg/l	1.0	[A] < 1.0	[A] < 1.0
Toluene	U	1760	10:1	μg/l	1.0	[A] < 1.0	[A] < 1.0
Ethylbenzene	U	1760	10:1	μg/l	1.0	[A] < 1.0	[A] < 1.0
m & p-Xylene	U	1760	10:1	μg/l	1.0	[A] < 1.0	[A] < 1.0
o-Xylene	U	1760	10:1	μg/l	1.0	[A] < 1.0	[A] < 1.0
Methyl Tert-Butyl Ether	N	1760	10:1	μg/l	1.0	[A] < 1.0	[A] < 1.0

Results - Leachate

Client: Environmental Laboratory Services Ltd	Chemtest Job No.:			20-15813	20-15813		
Quotation No.: Q20-19728		(Chemte	est Sam	ple ID.:	1020856	1020857
Order No.: 7362			Clie	nt Samp	le Ref.:	182328/001	182328/002
			Clie	ent Sam		1	2
				Sample	e Type:	SOIL	SOIL
Determinand	Accred.	SOP	Туре	Units	LOD		
Naphthalene	U	1800	10:1	µg/l	0.10	< 0.10	< 0.10
Acenaphthylene	U	1800	10:1	µg/l	0.10	< 0.10	< 0.10
Acenaphthene	U	1800	10:1	µg/l	0.10	< 0.10	< 0.10
Fluorene	U	1800	10:1	µg/l	0.10	< 0.10	< 0.10
Phenanthrene	U	1800	10:1	µg/l	0.10	< 0.10	< 0.10
Anthracene	U	1800	10:1	µg/l	0.10	< 0.10	< 0.10
Fluoranthene	U	1800	10:1	µg/l	0.10	< 0.10	< 0.10
Pyrene	U	1800	10:1	µg/l	0.10	< 0.10	< 0.10
Benzo[a]anthracene	U	1800	10:1	µg/l	0.10	< 0.10	< 0.10
Chrysene	U	1800	10:1	µg/l	0.10	< 0.10	< 0.10
Benzo[b]fluoranthene	U	1800	10:1	µg/l	0.10	< 0.10	< 0.10
Benzo[k]fluoranthene	U	1800	10:1	µg/l	0.10	< 0.10	< 0.10
Benzo[a]pyrene	U	1800	10:1	µg/l	0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	U	1800	10:1	µg/l	0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene	U	1800	10:1	µg/l	0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene	U	1800	10:1	µg/l	0.10	< 0.10	< 0.10
Total Of 16 PAH's	U	1800	10:1	µg/l	2.0	< 2.0	< 2.0

Deviations

In accordance with UKAS Policy on Deviating Samples TPS 63. Chemtest have a procedure to ensure 'upon receipt of each sample a competent laboratory shall assess whether the sample is suitable with regard to the requested test(s)'. This policy and the respective holding times applied, can be supplied upon request. The reason a sample is declared as deviating is detailed below. Where applicable the analysis remains UKAS/MCERTs accredited but the results may be compromised.

Sample:	Sample Ref:	Sample ID:	Sample Location:	Sampled Date:	Deviation Code(s):	Containers Received:
1020856	182328/001	1			A	Amber Glass 250ml
1020856	182328/001	1			A	Plastic Tub 500g
1020857	182328/002	2			A	Amber Glass 250ml
1020857	182328/002	2			A	Plastic Tub 500g

Test Methods

SOP	Title	Parameters included	Method summary
1010	pH Value of Waters	рН	pH Meter
1300	Cyanides & Thiocyanate in Waters	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Continuous Flow Analysis.
1450	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	determination by inductively coupled plasma
1675	TPH Aliphatic/Aromatic split in Waters by GC-FID(cf. Texas Method 1006 / TPH CWG)	Aliphatics: >C5–C6, >C6–C8, >C8– C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35– C44Aromatics: >C5–C7, >C7–C8, >C8– C10, >C10–C12, >C12–C16, >C16– C21, >C21– C35, >C35– C44	Pentane extraction / GCxGC FID detection
1680	Extractable Petroleum Hydrocarbons	Aliphatics: >C5–C6, >C6–C8, >C8– C10*, >C10–C12*, >C12–C16*, >C16–C21*, >C21– C35*, >C35– C44Aromatics: >C5–C7, >C7–C8, >C8– C10*, >C10–C12*, >C12–C16*, >C16– C21*, >C21– C35*, >C35– C44	Dichloromethane extraction / GCxGC FID detection
1760	Volatile Organic Compounds (VOCs) in Waters by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics. (cf. USEPA Method 8260)	Automated headspace gas chromatographic (GC) analysis of water samples with mass spectrometric (MS) detection of volatile organic compounds.
1800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Waters by GC-MS	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Pentane extraction / GCMS detection
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge

The right chemistry to deliver results

Report Information

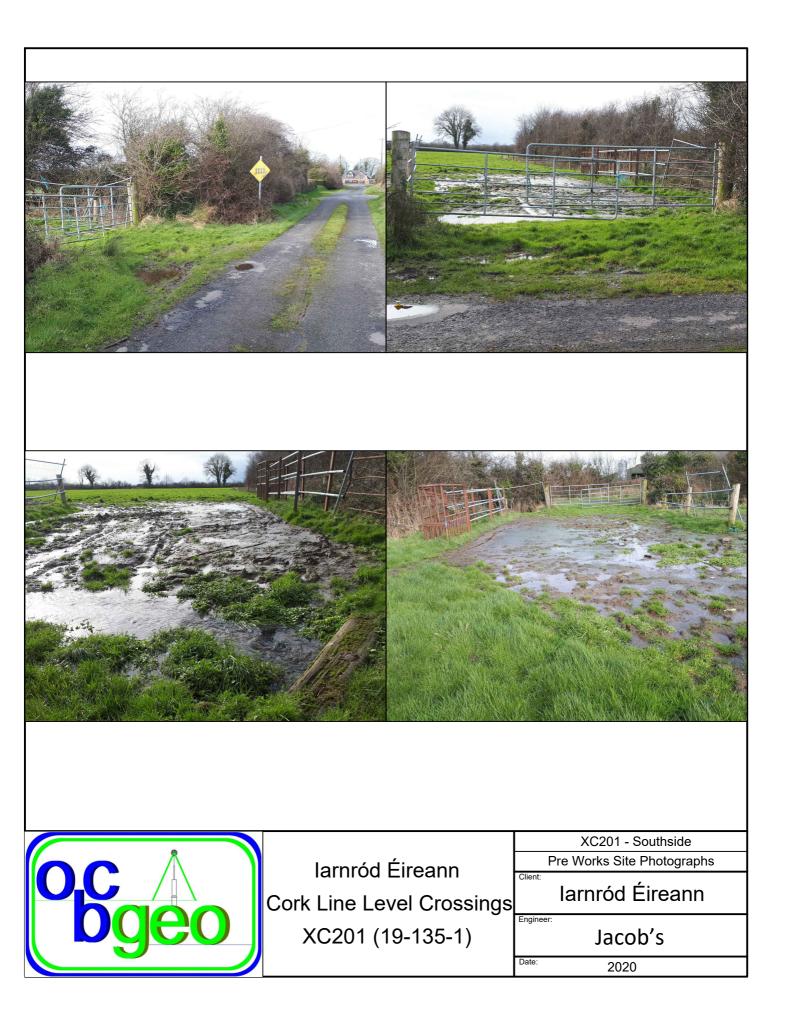
Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
- < "less than"
- > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected All results are expressed on a dry weight basis The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

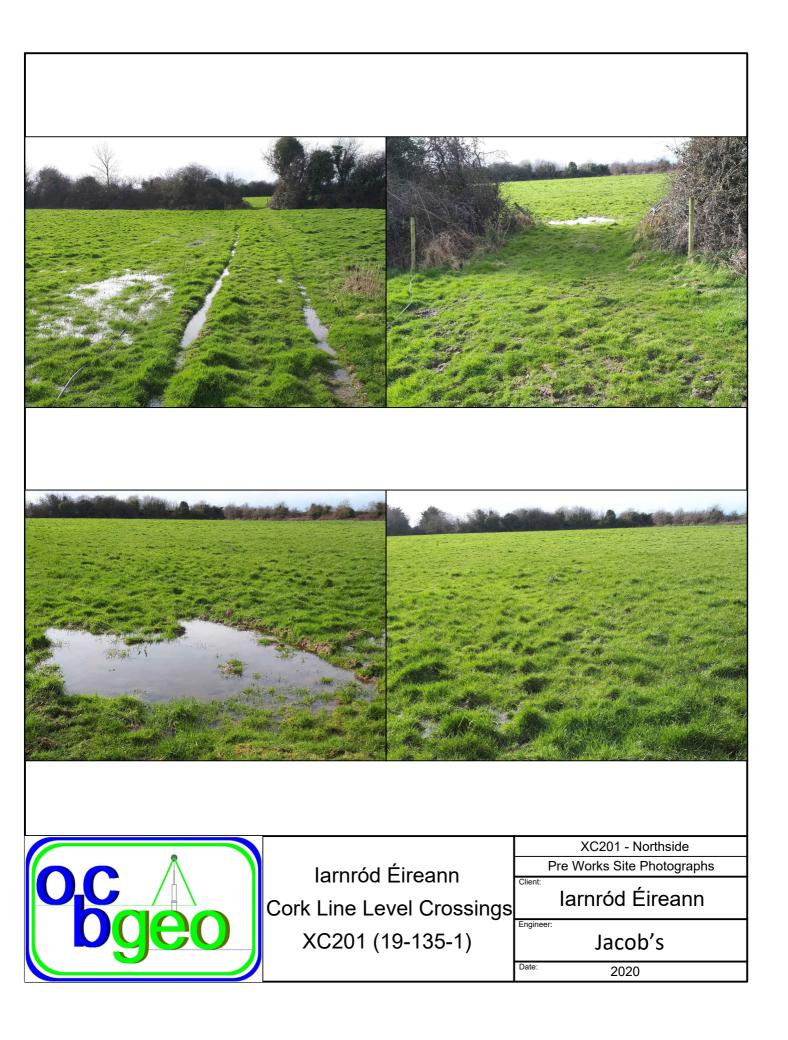

Sample Retention and Disposal

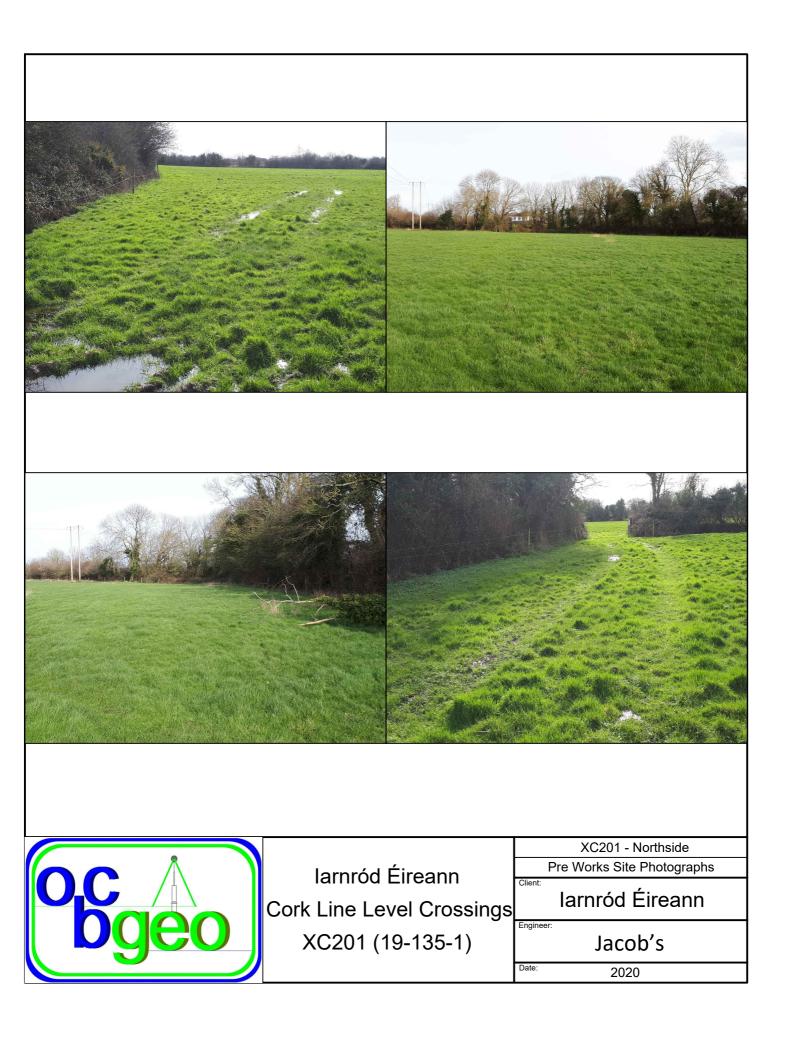
All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

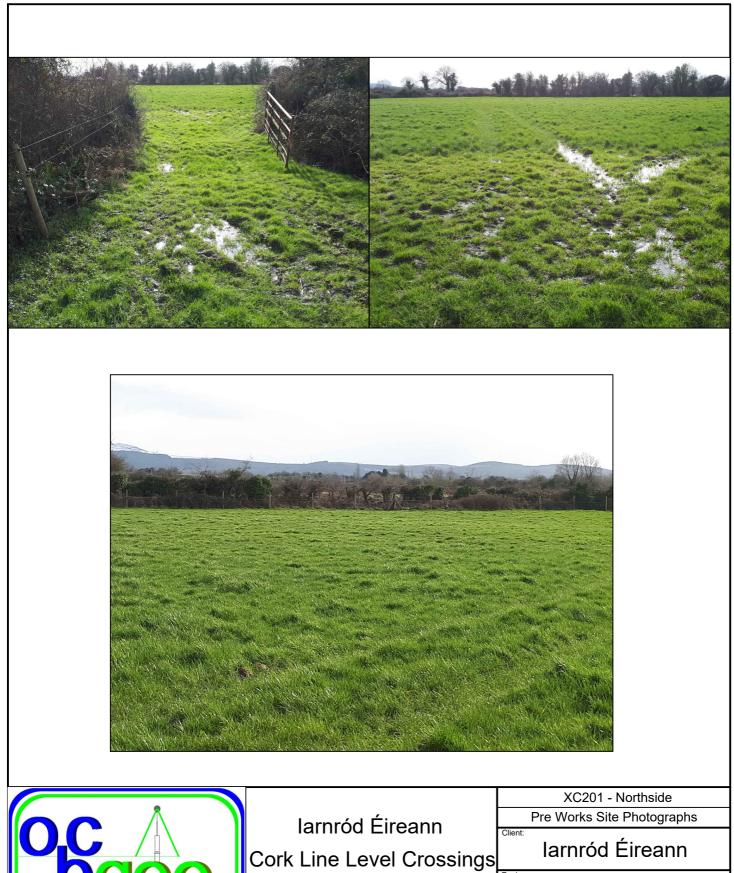
If you require extended retention of samples, please email your requirements to:

customerservices@chemtest.com

Appendix I Pre & Post Site Condition Photographs

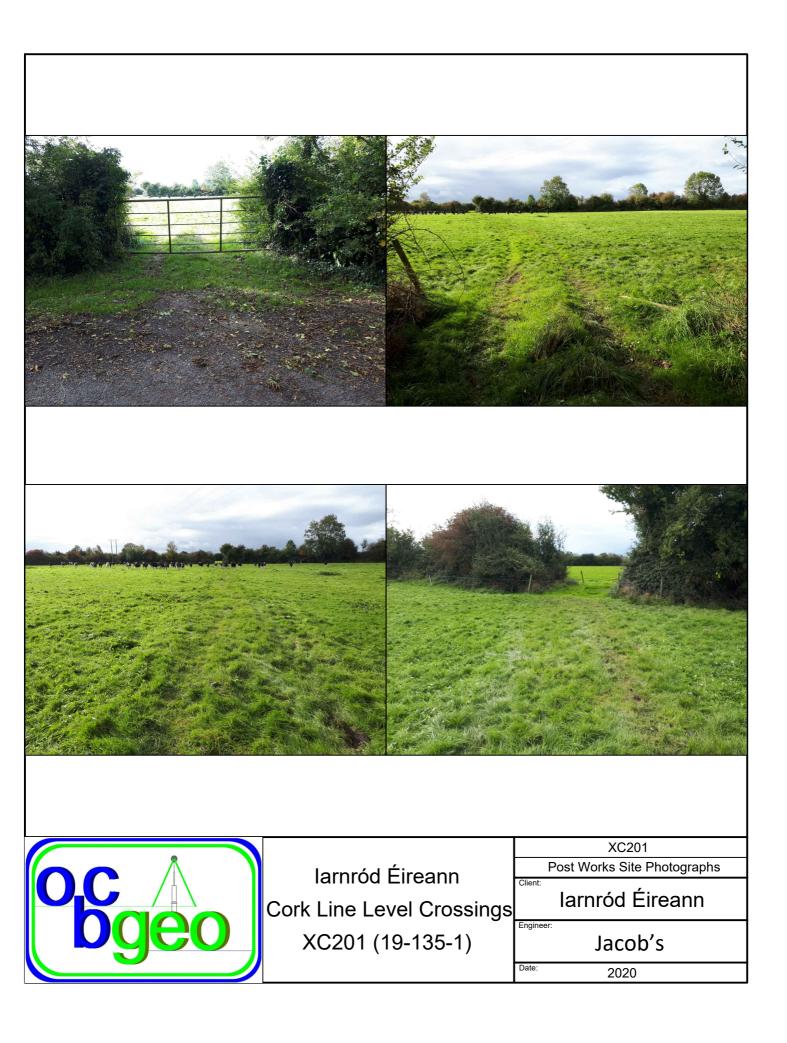


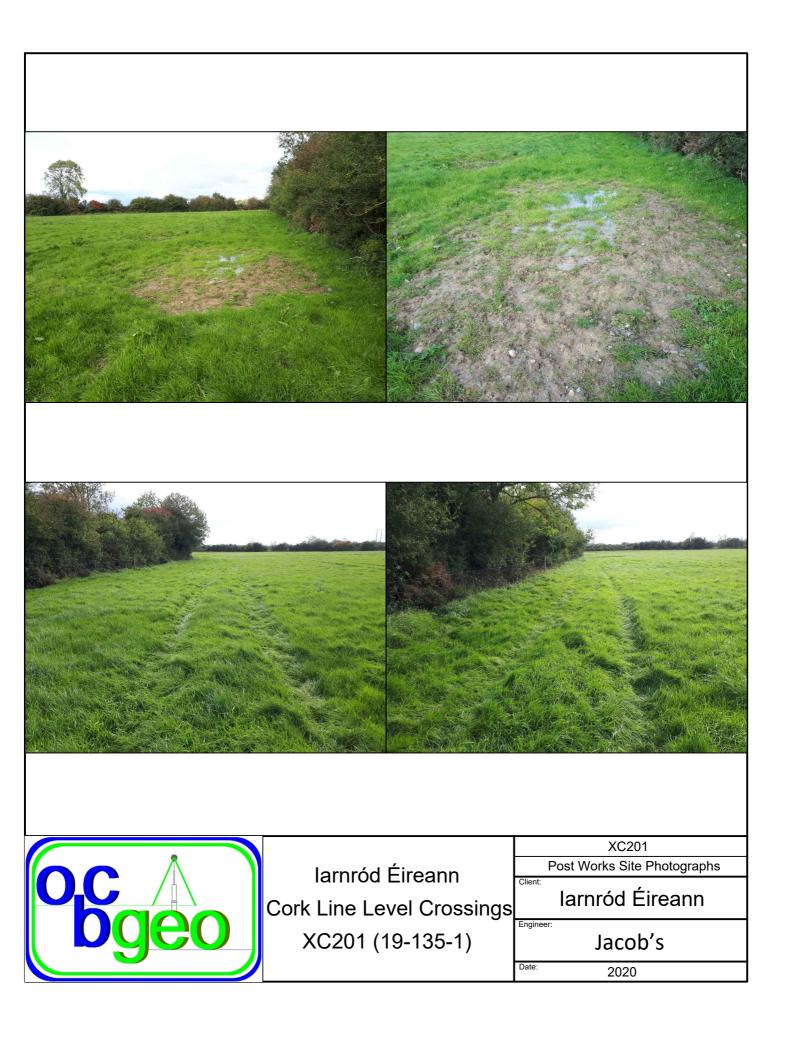


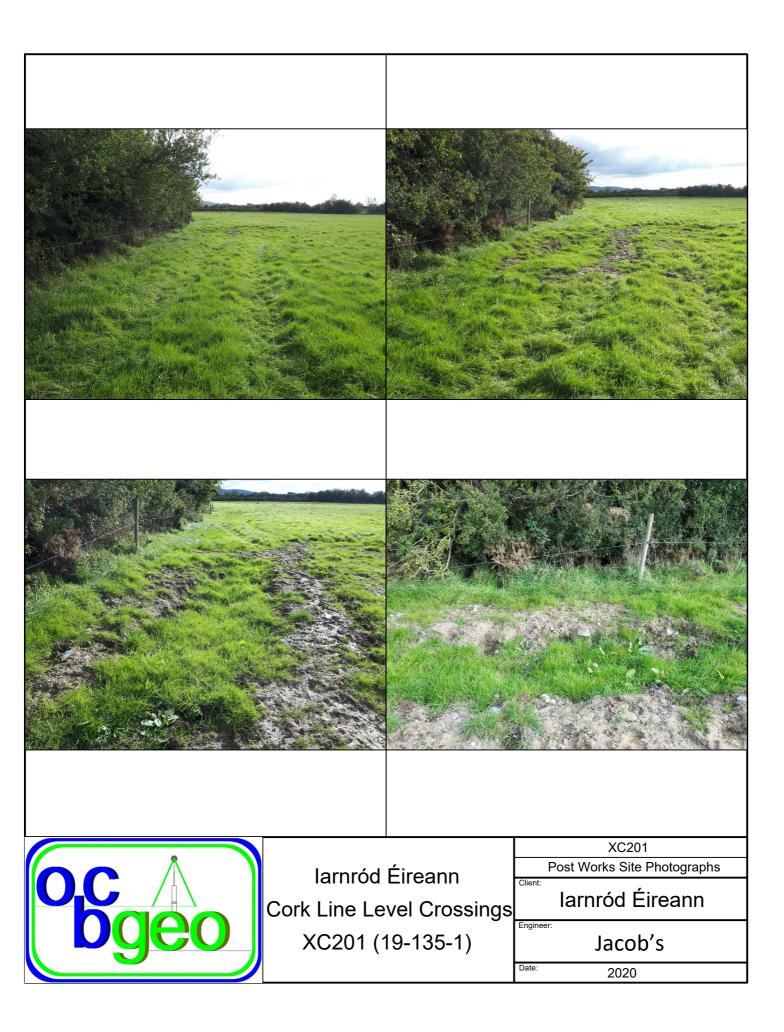


larnród Éireann Cork Line Level Crossings XC201 (19-135-1)

Pre Works Site Photographs

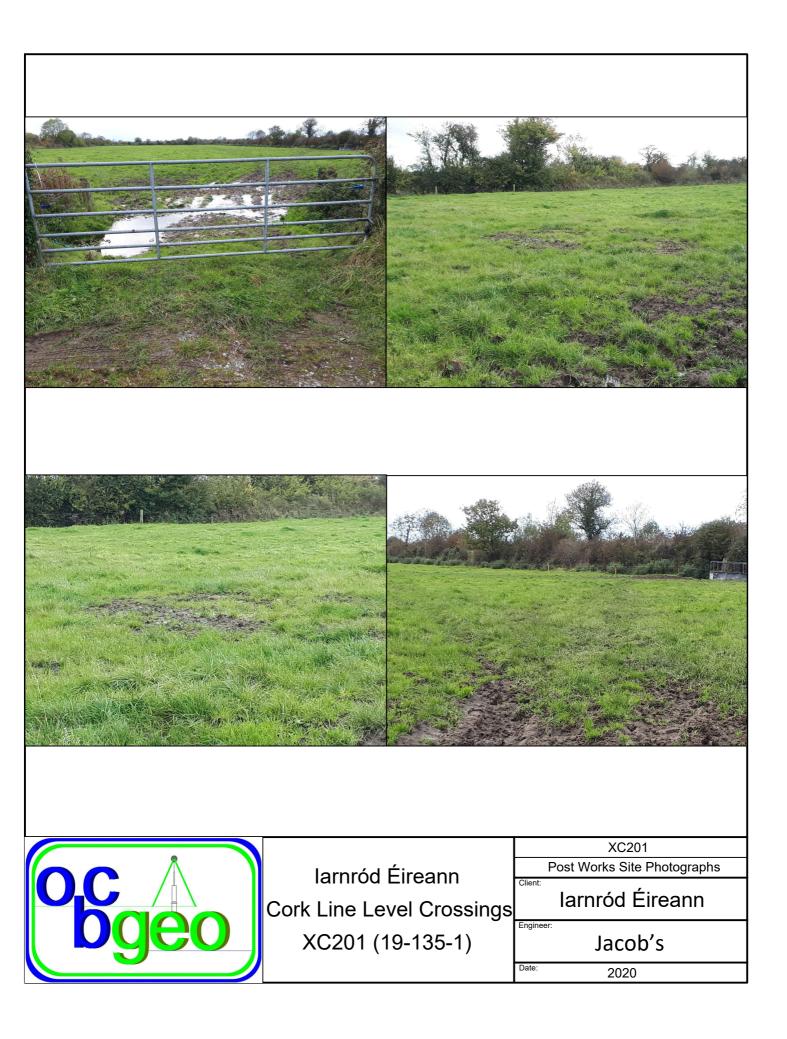

larnród Éireann

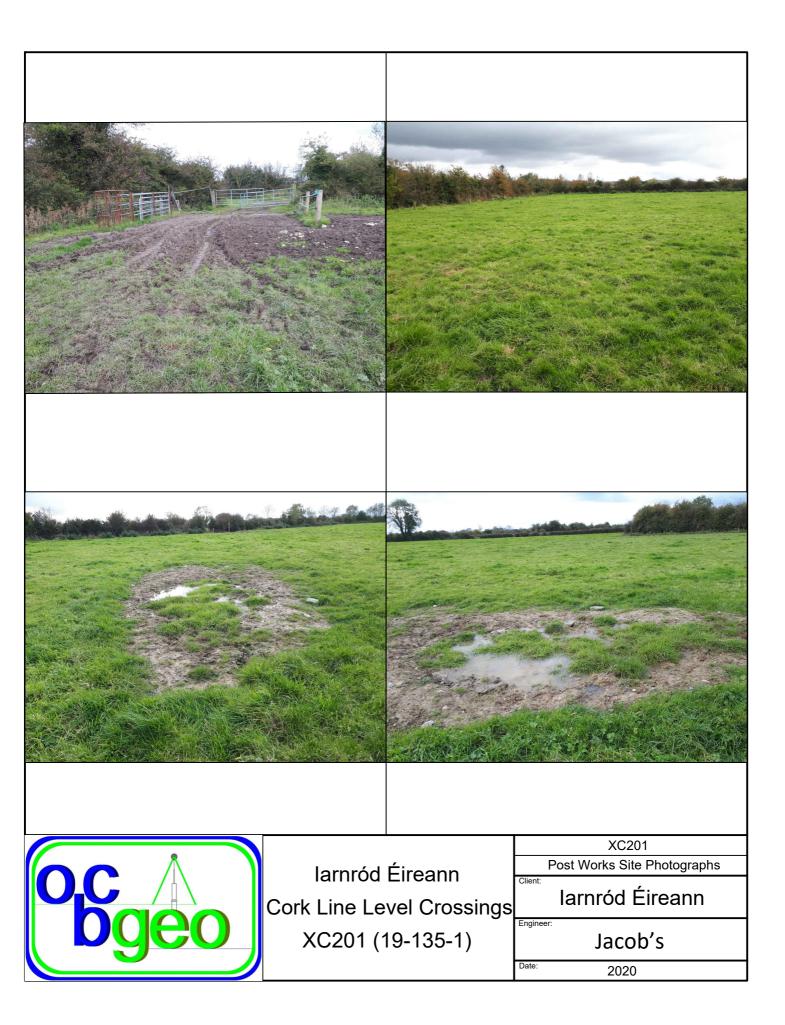

Jacob's 2020

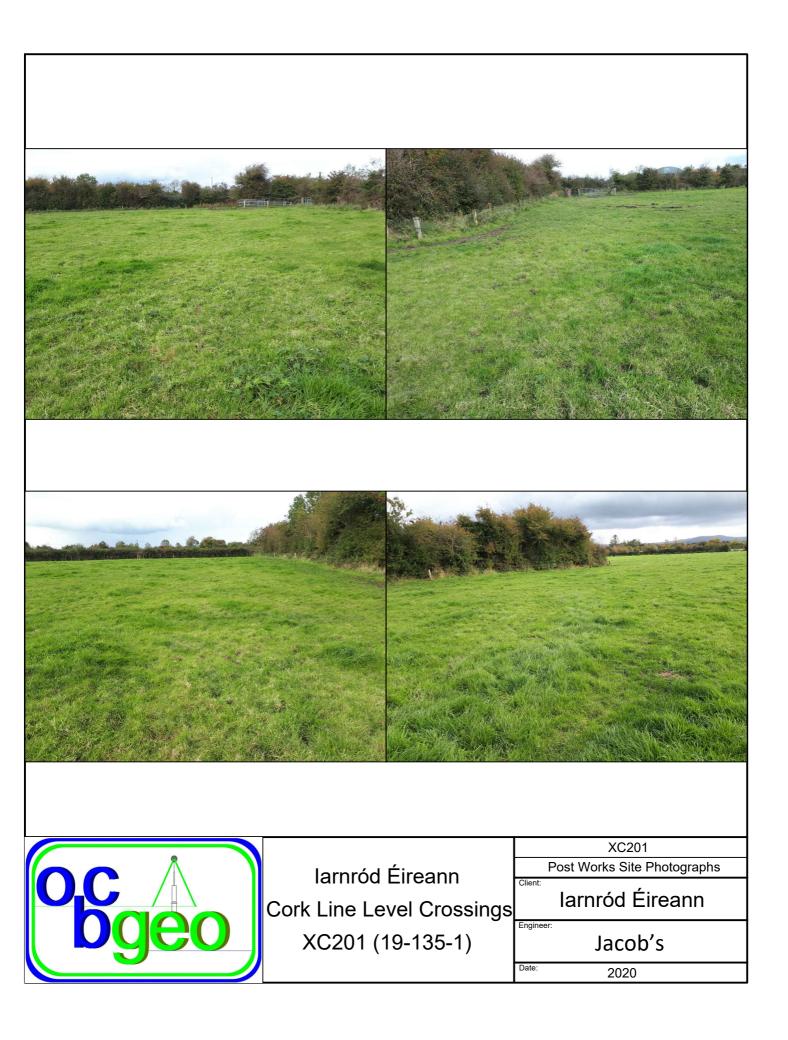

Client:

Engineer

Date:







Cork Line Level Crossings – XC211 Ground Investigation

Primary Author:	Ian Holley
Client:	Irish Rail
Client's Representative:	JACOBS
Report Date:	25 th November 2020
Report No.:	OCB19-135-2
File Location:	OCB19-135-2/Reporting/XC21

1

CONTENTS

Document Control Sheet Note on: Methods of describing soils and rocks & abbreviations used on exploratory hole logs

1	AUTHORITY	
2	SCOPE	
3	DESCRIPTION OF SITE	1
4	SITE OPERATIONS	2
	4.1 Cable Percussion Boreholes	2
	4.2 Standpipe Installations	
	4.3 Trial Pits	
	4.4 Indirect CBR Tests	
	4.5 Water Purging	4
	4.6 Surveying	4
5	LABORATORY WORK	5
	5.1 Geotechnical Laboratory Testing of Soils	5
	5.2 Environmental Laboratory Testing of Soils	5
6	GROUND CONDITIONS	6
	6.1 General Geology of the Area	6
	6.2 Ground Types Encountered During Investigation of the Site	6
	6.3 Groundwater	6
7	DISCUSSION	
	7.1 Proposed Construction	
8	REFERENCES	

APPENDICES

Appendix A	Site and Exploratory Hole Location Plans
Appendix B	Borehole Logs
Appendix C	Trial Pit Logs
Appendix D	Trial Pit Photographs
Appendix E	Indirect CBR Test Results
Appendix F	Water Purging Data & Logs
Appendix G	Geotechnical Laboratory Test Results
Appendix H	Environmental Laboratory Test Results
Appendix I	Pre & Post Site Condition Photographs

Document Control Sheet

Report No.:	OCB19-135-2
Project title:	Cork Line Level Crossings – XC211
Client:	Irish Rail
Client's Representative:	JACOBS

Revision	Status	Report prepared by:	Report reviewed by:	Report approved by:	Issue date
001	Draft	Ian Holley	Glen Byrne	Michael O'Connell	1 st October 2020
002	Final Factual	Ian Holley	Glen Byrne	Michael O'Connell	25 th November 2020

The works were conducted in accordance with:

Specification And Related Documents For Ground Investigation In Ireland. (2016) 2nd ed. Engineers Ireland.

BS EN 1997: Eurocode 7 - Geotechnical Design – Parts 1 & 2 (2007)

UK Specification for Ground Investigation 2nd Edition (2012)

British Standards Institute (2010) BS 5930:1999 + A2: 2010, Code of practice for site investigations. Incorporating Amendment Nos. 1 and 2, as partially replaced by:

- BS EN ISO 22475-1:2006: Geotechnical investigation and testing. Sampling methods and groundwater measurements. Technical principles for execution
- BS EN ISO 14688-1:2002/Amd 1:2013: Geotechnical investigation and testing. Identification and classification of soil. Identification and description
- BS EN ISO 14688-2:2004/Amd 1:2013: Geotechnical investigation and testing. Identification and classification of soil. Principles for a classification
- BS EN ISO 14689-1:2003: Geotechnical investigation and testing. Identification and classification of rock. Identification and description
- BS EN ISO 22476-2:2005/Amd 1:2011: Geotechnical investigation and testing. Field testing. Dynamic probing
- BS EN ISO 22476-3:2005/Amd 1:2011: Geotechnical investigation and testing. Field testing. Standard penetration test

METHODS OF DESCRIBING SOILS AND ROCKS

Soil and rock descriptions are based on the guidance in Section 6 of BS 5930: 1999 + A2: 2010, The Code of Practice for Site Investigation. The amendments revised the Standard to remove text superseded by BS EN ISO 14688-1:2002, BS EN ISO 14688-2:2004 and EN ISO 14689-1:2003 and refers to the relevant standard for each affected subclause. However, the following terms are used in the description of fine-grained soils, where applicable:

- Soft to Firm: fine-grained soil with consistency description close to the boundary between soft and firm soil (Table 13 of BS5930).
- Firm to Stiff: fine-grained soil with consistency description close to the boundary between firm and stiff soil (Table 13 of BS5930).

Abbreviations used	d on exploratory hole logs
U	Nominal 100mm diameter undisturbed open tube sample
Р	Nominal 100mm diameter undisturbed piston sample
В	Bulk disturbed sample
D	Small disturbed sample
W	Water sample
ES / EW	Soil sample for environmental testing / Water sample for environmental testing
SPT	Standard penetration test using a split spoon sampler (small disturbed sample obtained)
SPT (C)	Standard penetration test using 60-degree solid cone
x,x/x,x,x,x	Blows per increment during the standard penetration test. The initial two values relate to the seating drive (150mm) and the remaining four to the 75mm increments of the test length. The length achieved is stated (mm) for any test increment less than 75mm
N=X	SPT blow count 'N' given by the summation of the blows 'X' required to drive the full test length (300mm)
N=X/Z	Incomplete standard penetration test where the full test length was not achieved. The blows 'X' represent the total blows for the given test length 'Z' (mm)
V VR	Shear vane test (borehole) Hand vane test (trial pit) Shear strength stated in kPaV: undisturbed vane shear strengthVR: remoulded vane shear strength
<u>dd/mm/yy: 1.0</u> dd/mm/yy: dry	Date & water level at the borehole depth at the end of shift and the start of the following shift
Abbreviations rela	ting to rock core - reference Clause 44.4.4 of BS 5930: 1999
TCR (%)	Total Core Recovery: Ratio of rock/soil core recovered (both solid and non-intact) to the total length of core run.
SCR (%)	Solid Core Recovery: Ratio of solid core to the total length of core run. Solid core has a full diameter, uninterrupted by natural discontinuities, but not necessarily a full circumference and is measured along the core axis between natural fractures.
RQD (%)	Rock Quality Designation: Ratio of total length of solid core pieces greater than 100mm to the total length of core run.
FI	Fracture Index: Number of natural discontinuities per metre over an indicated length of core of similar intensity of fracturing.
NI	Non-Intact: Used where the rock material was recovered fragmented, for example as fine to coarse gravel size particles.
AZCL	Assessed zone of core loss: The estimated depth range where core was not recovered.
DIF	Drilling induced fracture: A fracture of non-geological origin brought about by the rock coring.

Cork Line Level Crossings – XC211

1 AUTHORITY

On the instructions of Iarnród Éireann / Irish Rail, a ground investigation was undertaken at multiple locations along the Cork to Dublin railway line, between Limerick Junction and Mallow stations, to provide geotechnical and environmental information for input to the design and construction of proposed overbridges, embankments, culverts, access roads and footpaths to enable the closure of five manned level crossings

This report details the work carried out both on site at XC211 and in the geotechnical and chemical testing laboratories; it contains a description of the site and the works undertaken, the exploratory hole logs and the laboratory test results.

All information given in this report is based upon the ground conditions encountered during the site investigation works, and on the results of the laboratory and field tests performed. However, there may be conditions at the site that have not been taken into account, such as unpredictable soil strata, contaminant concentrations, and water conditions between or below exploratory holes. It should be noted that groundwater levels usually vary due to seasonal and/or other effects and may at times differ to those measured during the investigation.

This report was prepared by OCB Geotechnical Ltd for the use of Iarnród Éireann / Irish Rail in response to particular instructions. Any other parties using the information contained in this report do so at their own risk and any duty of care to those parties is excluded.

2 SCOPE

The extent of the investigation, as instructed by the JACOBS, included boreholes, trial pits, indirect CBR testing, installation of standpipes, water purging, soil sampling, in-situ and laboratory testing, and the preparation of a factual report on the findings.

3 DESCRIPTION OF SITE

As shown on the site location plan in Appendix A, level crossing XC211 is located in the Farran townland, 4.9km southeast of Charleville, Co. Cork. An unnamed road crosses the Dublin-Cork railway line approximately 200m east of the N20. The level crossing is currently manned with a house and cabin located adjacent to the east of the railway line. The site is surrounded by agricultural land with a number of residential homes and farms in the area.

The site is relatively flat throughout. The main works areas are within agricultural fields, some may be marshy depending on weather conditions.

The existing site is presented on the site and exploratory hole location plans in Appendix A.

4 SITE OPERATIONS

Site operations, which were conducted between 20th February 2020 and 6th August 2020, included:

- Two (2) Cable Percussion Boreholes
- A Standpipe Installation in one (1) Borehole
- Three (3) Trial Pits
- Indirect CBR tests at six (6) locations
- Water Purging in one (1) location1

The exploratory holes and in situ tests were located as instructed by the Client's Representative, as shown on the exploratory hole location plan in Appendix A.

4.1 Cable Percussion Boreholes

Two boreholes (CP01 & CP02) were put down to completion in minimum 200mm diameter using a Pilcon cable percussion soil boring rig. All boreholes were terminated either at their scheduled completion depths, on instruction from a Jacobs engineer or else on encountering virtual refusal on obstructions, including large boulders and weathered bedrock.

Hand dug inspection pits were carried out between ground level and 1.2m depth to ensure boreholes were put down at locations clear of services or subsurface obstructions.

Disturbed (bulk bag and tub) samples were taken within the encountered strata. Environmental samples were taken at standard intervals, as directed by Jacobs.

Standard penetration tests were carried out in accordance with EC7 at standard depth intervals using the split spoon sampler (SPT). The penetrations are stated for those tests for which the full 150mm seating drive or 300mm test drive was not possible. The N-values provided on the borehole logs are uncorrected and no allowance has been made for energy ratio corrections.

Any water strikes encountered during boring were recorded along with any changes in their levels as the borehole proceeded.

Where water was added to assist with boring, a note has been added to the log to account for same.

Appendix B presents the borehole logs.

4.2 Standpipe Installations

A groundwater monitoring standpipe was installed in borehole CP02.

Details of the installations, including the diameter of the pipe and depth range of the response zone, are provided in Appendix B on the individual borehole logs.

Following the completion of the intrusive investigation work groundwater monitoring was undertaken at the site on four occasions. The results of the monitoring are presented in the report below in Section 6.3.

4.3 Trial Pits

Three trial pits (TP01–TP03) were excavated using a 15t tracked excavator fitted with a 600mm wide bucket, to depths between 3.40m and 4.50m. The trial pits were all terminated upon encountering obstructions or upon the pit walls collapsing.

Environmental samples were taken at depths of 0.05m, 0.50m, 1.0m and 3.0m in each trial pit.

Disturbed (small tub and bulk bag) samples were taken at standard depth intervals and at change of strata.

Hand Vane testing was completed successfully where appropriate and where specified by Jacobs.

Any water strikes encountered during excavation were recorded along with any changes in their levels as the excavation proceeded. The stability of the trial pit walls was noted on completion.

Appendix C presents the trial pit logs with photographs of the pits and arising provided in Appendix D.

4.4 Indirect CBR Tests

An indirect CBR test was conducted at six locations (TRL01 – TRL06) using a Dynamic Cone Penetrometer (DCP). The equipment was developed in conjunction with the UK Transport Research Laboratory, is used widely throughout the world, and is referred to in the UK Highway Agency Interim Advice Note 73/06.

The test results are presented in Appendix E in the form of plots of the variation with depth of the cumulative blow count. Straight lines have been fitted to the plots and the CBR for each depth range estimated using the following relationship, as proposed by DTP Interim Advice Note 73/06 (Design Guidance for Road Pavement Foundations):

Log CBR = 2.48-1.057 Log (mm/blow)

The occasionally elevated CBR values could be a consequence of the coarse-grained content of the penetrated soils and are often not representative of the soil matrix.

4.5 Water Purging

Prior to sampling from the standpipe (in CP02) water purging was carried out.

Appendix F presents the water purging data logs.

4.6 Surveying

A broad survey of the site using a handheld CAT scanner to identify any existing buried services or old foundations/obstructions to excavation was carried out before commencement of excavation works. A GPR survey to PAS 128 specification was carried out at each location prior to excavation. The GPR survey report is presented in an addendum to follow issuance of this report.

The as-built exploratory hole positions were surveyed following completion of site operations by a Site Engineer from OCB Geotechnical. Surveying was carried out using a Trimble R6 GPS system employing VRS and real time kinetic (RTK) techniques.

The plan coordinates (Irish Transverse Mercator, ITM) and ground elevation (mOD Malin) at each location are recorded on the individual exploratory hole logs. The exploratory hole plan presented in Appendix A shows these as-built positions.

Pre-work site conditions were surveyed and upon completion of all site works at each site a post-work site condition survey was carried out. The pre and post site condition photographs are presented in Appendix I.

5 LABORATORY WORK

Upon their receipt in the laboratory, all disturbed samples were carefully examined and accurately described and their descriptions incorporated into the borehole logs.

5.1 Geotechnical Laboratory Testing of Soils

Laboratory testing of soils comprised:

- **soil classification:** moisture content measurement, Atterberg Limit tests and particle size distribution analysis.
- **compaction:** dry density/moisture content relationship.
- **soil chemistry:** pH, Sulphur content, Organic Matter content and water-soluble and total sulphate content.

Laboratory testing of soils samples was carried out in accordance with British Standards Institute (1990) *BS 1377:1990, Methods of test for soils for civil engineering purposes. Parts 1 to 9.*

The test results are presented in Appendix G.

5.2 Environmental Laboratory Testing of Soils

In addition, environmental testing, as specified by Jacobs was conducted on selected environmental samples by Socotec at its laboratory in Burton-on-Trent, United Kingdom. Results of environmental testing are presented in Appendix H.

6 GROUND CONDITIONS

6.1 General Geology of the Area

Teagasc soil mapping indicates that the site area is underlain by Glaciofluvial Sands and Gravels, but Glacial Till derived chiefly from Devonian sandstones also occurs in the surrounding area.

The Geological Survey of Ireland (GSI) bedrock mapping database indicates that soils in the site area are underlain at depth by the Lower Carboniferous-age strata of the Ballysteen Formation, which consists of dark grey irregularly bedded and nodular bedded argillaceous (muddy) bioclastic limestones (wackestones and packstones) interbedded with fossiliferous calcareous shales.

The Lower Carboniferous strata were subjected to compressional deformation (tectonic shortening) during the Variscan Orogeny in Late Carboniferous and Early Permian times, resulting in the formation of an eastnortheast west-southwest trending fold-thrust belt. The site is located on the northwest side of the Ballyhoura Mountains between a west-southwest to east-northeast orientated anticline (upfold) axis to the south and a similarly orientated major thrust fault zone to the north. Bedrock in the site vicinity likely dips at variable angles to the north and south, having undergone asymmetric buckle folding and contractional thrust faulting.

According to GSI groundwater database, the Ballysteen Formation is a locally important bedrock aquifer, which is moderately productive only in local zones. The site vicinity has a high groundwater vulnerability index. Karst features such as enlarged fissures, cavities and depressions occur locally in areas of northern County Cork underlain by the Ballysteen Formation.

6.2 Ground Types Encountered During Investigation of the Site

A summary of the ground types encountered in the exploratory holes is listed below, in approximate stratigraphic order:

- Topsoil: encountered typically in 200mm to 250mm thickness.
- Glacial Till: Sandy gravelly silty clay, frequently low cobble content, typically soft to firm in upper horizons, becoming stiff with increasing depth.
- Bedrock: No evidence of bedrock encountered to a maximum depth of 12.00m bgl in CP02.

6.3 Groundwater

Details of the individual groundwater strikes, along with any relative changes in levels as works proceeded, are presented on the exploratory hole logs for each location.

Groundwater monitoring to date in standpipe installations, yielded the following results:

Data	Depth to standing water level (m)
Date	CP02
13/08/20	4.15
17/08/20	3.84
21/08/20	0.01
29/09/20	2.19

Continued monitoring of the installed standpipe will give an indication of the seasonal variation in groundwater level.

7 DISCUSSION

7.1 Proposed Construction

It is proposed to construct overbridges, embankments, culverts, access roads and footpaths to enable the closure of five manned level crossings.

No further details were available to OCB Geotechnical at the time of preparing this report.

8 **REFERENCES**

Specification And Related Documents For Ground Investigation In Ireland. (2016) 2nd ed. Engineers Ireland.

BS EN 1997-1: 2007. *Eurocode 7 - Geotechnical design - Part 1 General Rules*. British Standards Institution, London.

BS EN 1997-2: 2007. *Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing*. British Standards Institution, London.

BS 1377: 1990. *Methods of test for soils for civil engineering purposes*. British Standards Institution, London.

BS 5930: 2015. *Code of practice for ground investigations*. British Standards Institution, London.

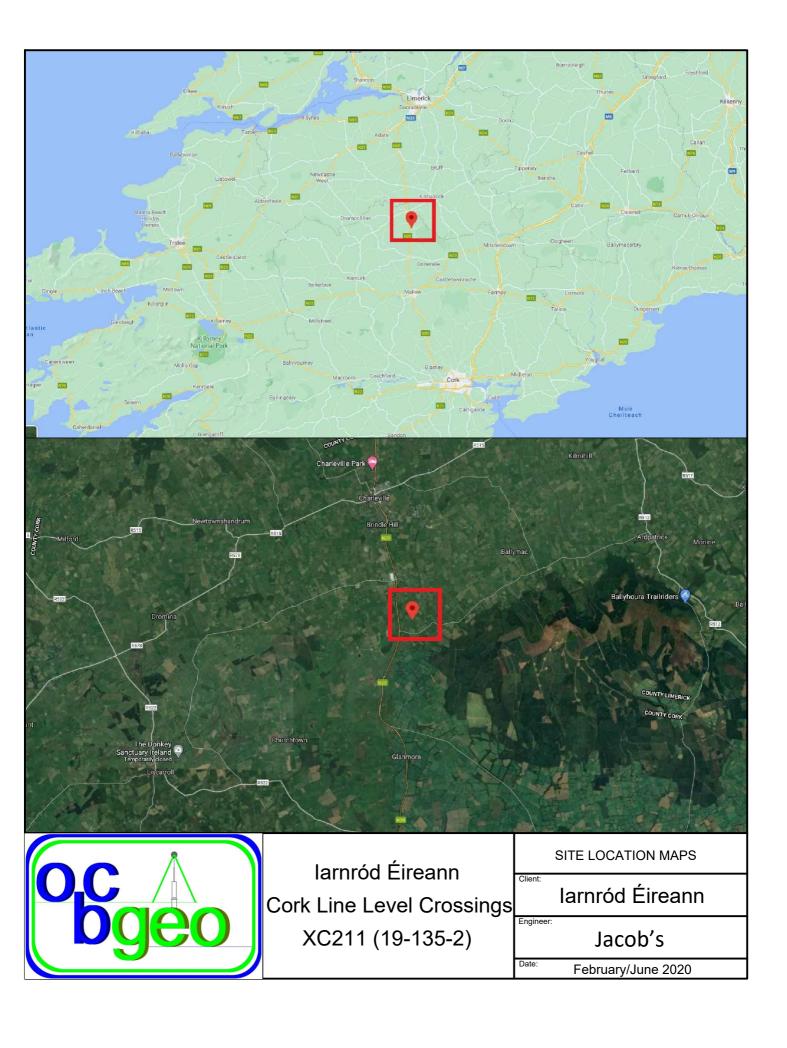
BS EN ISO 14688-1: 2002. *Geotechnical investigation and testing - Identification and classification of soil - Part 1 Identification and description*. British Standards Institution, London.

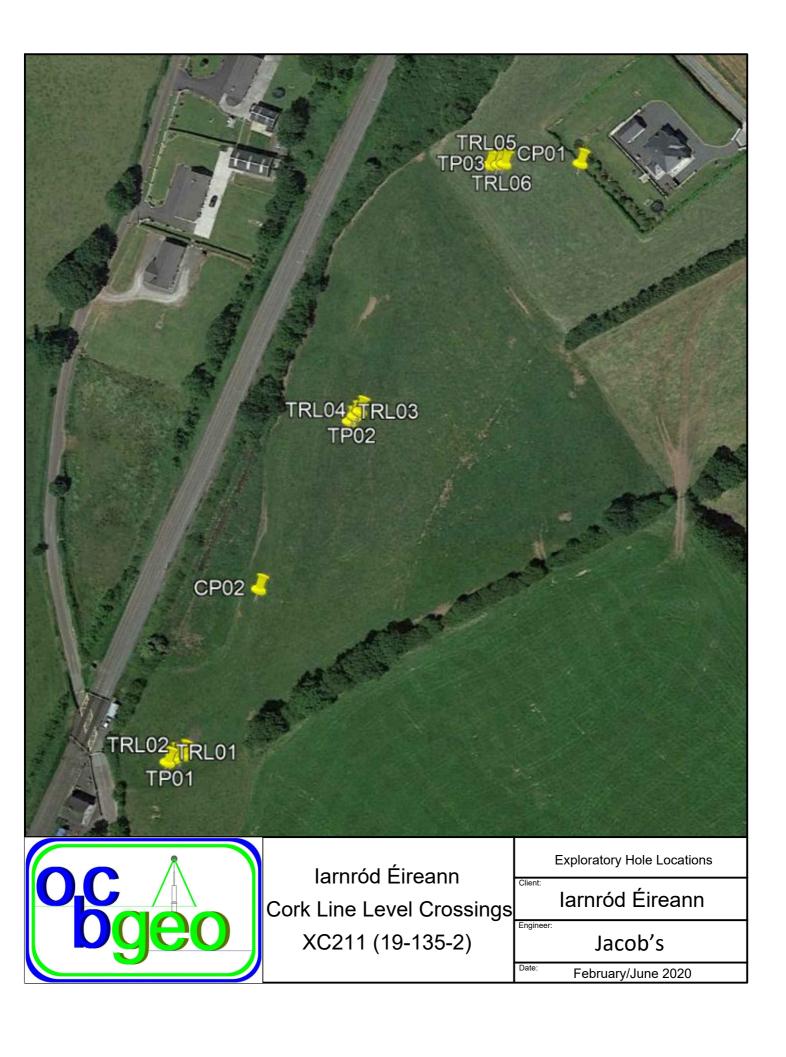
BS EN ISO 14689-1: 2003. Geotechnical investigation and testing - Identification and classification of rock - Part 1 Identification and description. British Standards Institution, London.

Building Research Establishment, 2005. BRE Special Digest 1, Concrete in aggressive ground.

Building Research Establishment, 2007. BRE Digest 365: Soakaways.

BS EN 12457-2: 2002 Characterisation of waste. Leaching. Compliance test for leaching of granular waste materials and sludges. One stage batch test at a liquid to solid ratio of 10 l/kg for materials with particle size below 4 mm (without or with size reduction).


Environmental Protection Agency / Draft Guidance Note on Soil Recovery Waste Acceptance Criteria. December 2017. http://www.epa.ie/pubs/consultation/soilrecoveryconsultation/


Environmental Protection Agency / Waste Classification List of Waste & Determining if Waste is Hazardous or Non-hazardous. 1st June 2015 <u>https://www.epa.ie/pubs/reports/waste/stats/wasteclassification/EPA_Waste_Classification_2015_Web.</u> <u>pdf</u>

Environment Agency UK (2009). Soil Guideline Values (SGVs). https://www.gov.uk/government/collections/land-contamination-technical-guidance

Soil Remediation Circular 2013, Ministry for Environment and Infrastructure, The Hague, Netherlands. <u>https://rwsenvironment.eu/subjects/soil/legislation-and/soil-remediation/</u>

Appendix A Site and Exploratory Hole Location Plans

Appendix B Borehole Logs

	Å			Project	No.:	Project	t Name:	Bo	rehole	e No.:
	J C /∖∖	\backslash		19-135			ne Level Crossings	×	C211-	CP01
	Dde	0		Coordi	nates:	Client:		5	heet 1	1 of 2
			/	55497	0.41 E		d Éireann / Irish Rail	┢		
Method:				61818	4.23 N		s Representative:	Sc	ale:	1:50
Cable Percus	sion					JACOB:		Dr	iller:	IOD
Plant: Pilcon					d Level: 4 mOD	Dates:	18/06/2020 - 22/06/2020	Lo	gger:	IH
Depth	Sample / Casin Dept	ng Water th Depth	Field Records	Level	Depth (m)	Legend	Description	Water	Backfi	
(m) 0.05	ES1) (m)		(mOD)	(Thickness)	Legend	TOPSOIL	š	Mackin Karl	- 🔊
0.30 - 0.70	B2			111.8	(0.30) 0.30					2
0.30 - 0.70	D3			4	(0.40)	$\overline{\times} \overline{\times} \overline{\times} \overline{\times}$	Brown slightly gravelly slightly sandy clayey SILT with many rootlets. Gravel is fine to coarse, subangular to subrounded. Sand is fine to coarse.			0.5
0.50 0.70 - 1.90	ES4 B5			111.4	0.70		Soft brown slightly sandy slightly gravelly silty CLAY. Sand is fine to coarse.	-)
0.70 - 1.90	D6			4	-		Gravel is fine to coarse, subangular to subrounded.			<u>ا ا ا</u>
1.20 - 1.65	SPT (C)		N=5 (1,1/1,1,2,1)		-	×—				
1.50	N=5				- (1.20)	×— —				
1.50	ES7				-	×				1.5
1.90 - 2.50	B8			110.2	- 1.90	X				
1.90 - 2.50	D9		50 (50 (4	-		Brown slightly sandy slightly gravelly CLAY with low cobble content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded. Cobbles			2.0 -
2.00 - 2.06	SPT (C)		50 (50 for 60mm/50 for 0mm)		- (0.60)		are subrounded.			
2.50 - 3.50	B10			109.6	2.50		stiff light brown slightly silty slightly gravelly sandy CLAY with medium	-		2.5
2.50 - 3.50	D11			4	-	<u>x ~ ~ ~</u>	cobble content. Gravel is fine to coarse, subangular to subrounded. Sand is			
3.00	ES12				-	<u>x ~ ~ ~</u> ~	fine to coarse. Cobbles are subrounded.			3.0 -
3.00 - 3.45	SPT (C) N=25		N=25 (2,6/5,7,8,5)		(1.50)	<u>x ~ ~ ~</u> ~				
2 50 - 4 50						<u>α_</u> ∘.×.∘.				3.5
3.50 - 4.50 3.50 - 4.50	B13 D14				-	x				3.5
					-	× × •				
4.00 - 4.45	SPT (C) N=8		N=8 (0,0/1,2,1,4)	108.1 4	- 4.00	x	Firm light brown slightly silty slightly gravelly sandy CLAY with medium	1		4.0 -
					(0.50)		cobble content. Gravel is fine to coarse, subangular to subrounded. Sand is fine to coarse. Cobbles are subrounded.			
4.50 - 5.50	B15			107.6	- 4.50		Soft light brown slightly gravelly slightly sandy CLAY with medium cobble	-		4.5
4.50 - 5.50	D16			4	-		and low small boulder content. Gravel is fine to coarse, subangular to			
5.00 - 5.45	SPT (C)		N=6 (0,1/1,2,1,2)		- (1.00)	م. م. مد	subrounded. Sand is fine to coarse. Cobbles and boulders are subrounded.			5.0 -
	N=6								·	
5.50 - 6.50	B17			106.6	- 5.50	<u></u>				5.5
5.50 - 6.50	D18			4	-	0 0	Firm to Stiff light brownish grey slightly silty slightly sandy very gravelly CLAY with low to medium cobble content. Sand is fine to coarse. Gravel is			
6.00 - 6.45			N-14 (2 2/2 5 2 2)		Ē	<u>x</u>	fine to coarse, angular to subrounded. Cobbles are subangular to subrounded.			6.0 -
0.00 - 0.45	SPT (C) N=14		N=14 (2,2/3,5,3,3)		-	<u>x</u>				0.0 -
					(1.70)	x				
6.50 - 7.20 6.50 - 7.20	B19 D20				-	<u>x ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~</u>				6.5
					-	<u>x x</u>				
7.00 - 7.45	SPT (C)		N=17 (3,2/4,5,4,4)		-	<u>x 0 0 0</u>				7.0 -
7.20 - 8.00	N=17 B21			104.9 4	7.20	X	Stiff light brownish grey slightly silty gravelly sandy CLAY. Sand is fine to	1		
7.20 - 8.00	D22				- - (0.80)	×	coarse. Gravel is fine to coarse, angular to subrounded.			7.5
					(0.60)	×				
8.00 - 9.00	B23			104.1	- 8.00	×	Stiff dark group lightly grouply dightly conduct AV Condia fina to an an	-		8.0 -
8.00 - 9.00 8.00 - 8.45	D24 SPT (C)		N=22 (4,4/6,5,6,5)	4			Stiff dark grey slightly gravelly slightly sandy CLAY. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded. Cobbles are subangular to			
	N=22		11-22 (+,4/0,3,0,3)		-		subrounded.			8.5
8.50 - 9.50	U25				-					
9.00 - 10.00	B26				- - (2.00)					9.0 -
9.00 - 10.00	D27				(2.00)					9.0 -
9.00 - 9.45	SPT (C) N=20		N=20 (5,5/6,5,4,5)		-					
	11-20				F -					9.5
					- 10.00		Continued on Next Page			
Remarks							Water Added Water S From (m) To (m) Struck at (m) Casing		- Gener Time (min)	
							5.60 7.20 5.60		20	5.30
							Casing Details Chise	elling	Details	<u> </u>
							To (m) Diam (mm) From (m) 10.00 200 1.90	To (r 2.20	n) Tim	ne (hh:mn 00:30
									1	

6		c			Project	: No.:	Project	Name:	Bo	rehole	No.:
).C.	\wedge			19-135			ne Level Crossings		C211-C	
	ba	e			Coordi		Client:				
	~9			J	55497	0.41 E	larnróc	Éireann / Irish Rail		heet 2	012
Method:					1			Representative:	Sc	ale: 1	:50
Cable Percuss	sion				61818		JACOB		Dr	iller: IC	DD
Plant:		_				d Level:	Dates:		-		
Pilcon Depth	Sample /	Casing	Water		112.14 Level	4 mOD Depth (m)		18/06/2020 - 22/06/2020	_	gger: ⊪	1
(m)	Tests	Casing Depth (m)	Water Depth (m)	Field Records	(mOD)	(Thickness)	Legend	Description	Water	Backfill	
10.00 - 10.45	SPT (C) N=23			N=23 (7,6/5,6,6,6)	102.1 4	-		End of borehole at 10.000m			
						-					10.5
						-					
						-					11.0 -
						-					
						- -					11.5
						-					
						-					12.0 -
						-					
						-					12.5
						-					
						-					13.0 -
						-					
						-					13.5
						-					
						-					14.0 -
						-					
						-					14.5
						-					
						-					15.0 -
						-					
						-					15.5
						-					
						-					16.0 -
						-					
						-					16.5
						-					
						-					17.0 -
						-					
						-					17.5
						-					10 0
											18.0 -
						-					18.5
						-					.0.3
						- - 					19.0 -
						-					
						-					19.5
						-					
						-					_
Remarks										- General	
								From (m) To (m) Struck at (m) cas 5.60 7.20 5.60	ing to (m)	Time (min) R	ose to 5.30
								Casing Details Chi	selling	Details	
								To (m) Diam (mm) From (m) 10.00 200 1.90	To (r 2.20	n) Time	(hh:mi 00:30

		*			Project	t No.:	Projec	t Name:	Bo	oreh	ole	No.:
					19-135		Cork Li	ne Level Crossings)	(C2)	1 -C	P02
	DO	e	\mathbf{C}		Coordi	nates:				Shee	et 1	of 2
				/	55484	8.35 E						
Method:					61802	5 20 N			Sc	ale:	1	:50
	cussion							5	Dr	ille	: А	A
Plant: Pilcon	19-325 Cork Line Level Crossings XX Index Image of finance Status Status	gge	r: IF									
	Sample /	Casing	Water						_		_	1
-	Tests	Depth (m)		Field Records	(mOD)	(Thickness)	Legend	•	Wat	Ba	ckfill	
0.03					97.98	- · ·						.*
0.30 - 1.20	D3				57.50	- 0.50				°	•	0.5
0.50	ES4					- (0.90)	0 			•	•	
							<u>x o</u>				••••	10-
1.20 - 2.00	B5				97.08	- 1.20	x			Ŷ		, 1.0 -
1.20 - 2.00	D6					-						
1.20 - 1.65				N=15 (2,2/5,3,4,3)		(0.80)		Gravel is fine to coarse, angular to subrounded. Cobbles and boulders are				° 1.5 -
1.50						Ę		subangular to subrounded.				, ,
2.00 - 3.00 2.00 - 3.00					96.28	- 2.00	ا میں میں اور	Firm light brown slightly sandy slightly gravelly CLAY with low cobble	-			2.0 -
2.00 - 3.00 2.00 - 2.45	-			N=8 (1,2/1,3,2,2)		-	ا میں میں اور					2
	N=8					Ē	الم من من الم من من من من					2.5 -
						-	ا میں میں اور					»
3.00	ES10					- (2.00)						3.0 -
3.00 - 4.00												* ·
3.00 - 4.00 3.00 - 3.45				N=14 (2,4/4,3,4,3)		Ľ						3.5 -
	N=14											
						-	نې مې اې مې					
4.00 - 5.00 4.00 - 5.00					94.28	4.00	×~~~~					4.0 -
4.00 - 4.45	SPT (C)			N=17 (4,5/4,4,4,5)								
	N=17					(1.00)						4.5 -
						-						
5.00 - 6.00	B15				93.28	- 5.00	0. <u></u>	Van Stiff brown clichtly candy clichtly gravally CLAV. Sand is find to coarso	_			5.0 -
5.00 - 6.00 5.00 - 5.45				N-30 (5 7/7 9 7 7)		Ē					•	
5.00 - 5.45				14-50 (5,777,5,7,77		-					• • •	5.5 -
						-					••••	
c 00 7 00	D47					(2.00)					•	
6.00 - 7.00						(2.00)						6.0 -
6.00 - 6.45				N=32 (7,7/8,9,8,7)		-						
	11-52					F						6.5
7.00 - 8.00					91.28	- 7.00		Firm to Stiff light brown slightly silty sandy gravelly to very gravelly CLAY	\neg			7.0 -
7.00 - 8.00 7.00 - 7.45				N=11 (3,3/2,3,3,3)		-	<u>x~_</u>	with low cobble content. Sand is fine to coarse. Gravel is fine to coarse,				l '
7.50						Ē	<u>x ~ ~ ~</u>					7.5 -
,	019					_	<u>x ~ ~ ~</u>					
8.00 - 9.00	B22					(2.00)	<u>x ~ ~ ~</u> ~					8.0 —
8.00 - 9.00	D23					-						1
8.00 - 8.45				יו=10 (3,4/3,5,4,4)		Ľ	<u>x ° ×</u> °					8.5 -
						-	x					
						-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					1
9.00 - 10.00 9.00 - 10.00					89.28	- 9.00	×					9.0
9.00 - 9.45	SPT (C)			N=9 (2,3/2,2,2,3)		-	×	coarse. Gravel is fine to coarse, angular to subrounded.				
	N=9					(1.00)	×					9.5 -
						F	×					
10.00 - 11.00	0 B26				88.28	10.00		Continued on Next Page				<u> </u>
Remarks	I							Water Added Water				
									_B to (m)	, , , ine		,se to (n
								Casing Datails Chi	iselling		ils	
								To (m) Diam (mm) From (m)				(hh:mm
											1	

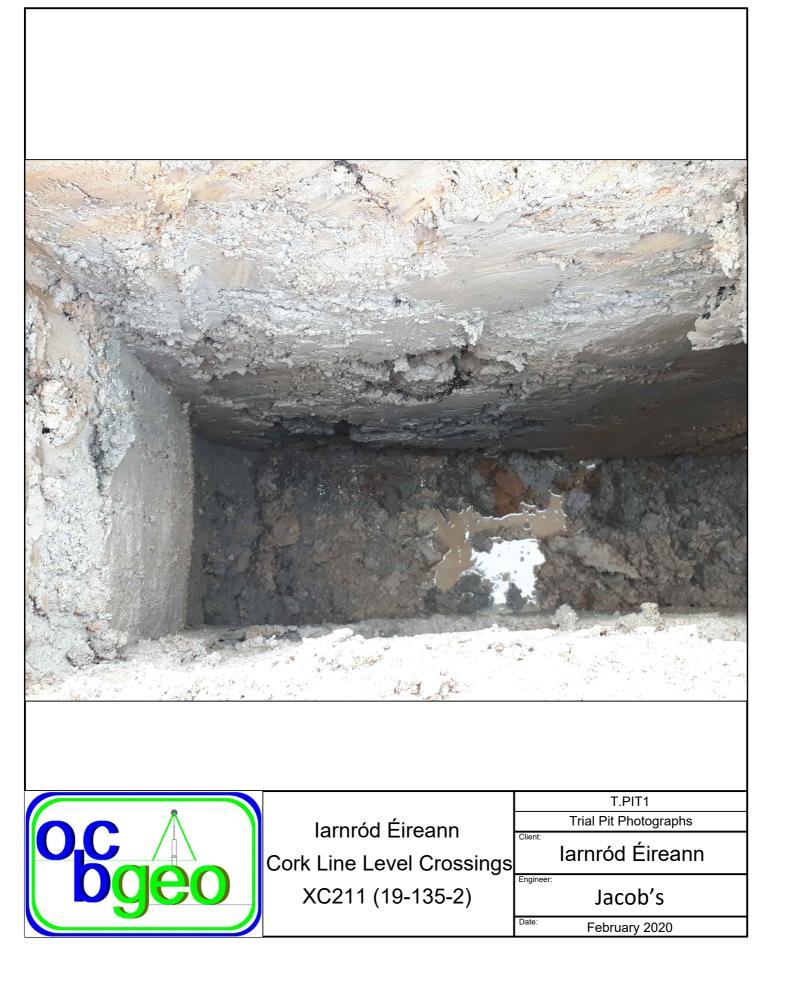
				Project	t No.:	Project	t Name:	Bo	orehol	e No.:
		Λ		19-135			ne Level Crossings			-CP02
	ha			Coordi		Client:				
	~y			55484			l Éireann / Irish Rail		sneet	2 of 2
Method:						Client's	s Representative:	Sc	ale:	1:50
Cable Percuss	ion			61802		JACOB	5	Dr	iller:	AA
Plant:					d Level:	Dates:				
Pilcon Depth	Sample /	Casing Wa	ater	98.2 Level	8 mOD Depth (m)		12/06/2020 - 17/06/2020	_	gger:	
(m)	Tests	Depth De	Field Records	(mOD)	(Thickness)		Description	Water	Back	fill
10.00 - 11.00 10.00 - 10.45	D27 SPT (C)		N=13 (3,2/4,3,3,3)		-		Firm light brown slightly gravelly slightly sandy CLAY with many fibrous rootlets and an organic odour. Sand is fine to coarse. Gravel is fine to			-
10.50	N=13 U30				(1.00)		coarse, angular to subrounded.			- 10.5 —
10100	0000									-
11.00 - 12.00	B28			87.28	- 11.00					11.0
11.00 - 12.00	D29			0/120		×	Stiff brown slightly silty slightly sandy very gravelly CLAY. Sand is fine to coarse. Gravel is fine to coarse, angular to subangular.			-
11.00 - 11.45	SPT (C) N=18		N=18 (4,6/4,4,5,5)		(1.00)	×				- - 11.5 —
11.50	U31				- (1.00)					-
12.00 - 12.45	SPT (C)		N=19 (5,6/7,4,4,4)	86.28	- 12.00	\sim \sim				
12.00 - 12.43	N=19		1,4,4,4)	00.28	- 12.00		End of borehole at 12.000m			
					-					12.5 -
					-					-
					-					13.0
					-					
					-					-
					-					13.5 -
					-					-
					-					14.0
					-					
										14.5 —
					-					-
										15.0 -
					-					-
										15.5 —
					-					-
					-					16.0 -
					-					-
					-					16.5 -
					-				1	
					F C				1	17.0
					-				1	-
									1	17.5 —
					-					
					-				1	18.0
					-					-
					-				1	18.5 —
					-					-
					 -					19.0
					-					
					-					19.5 —
					-				1	-
Remarks							Water Added Water From (m) To (m) Struck at (m)		e - Gene	
									g Details	
							To (m) Diam (mm) From (m) 12.00 200	To (I	m) Tii	me (hh:mm)

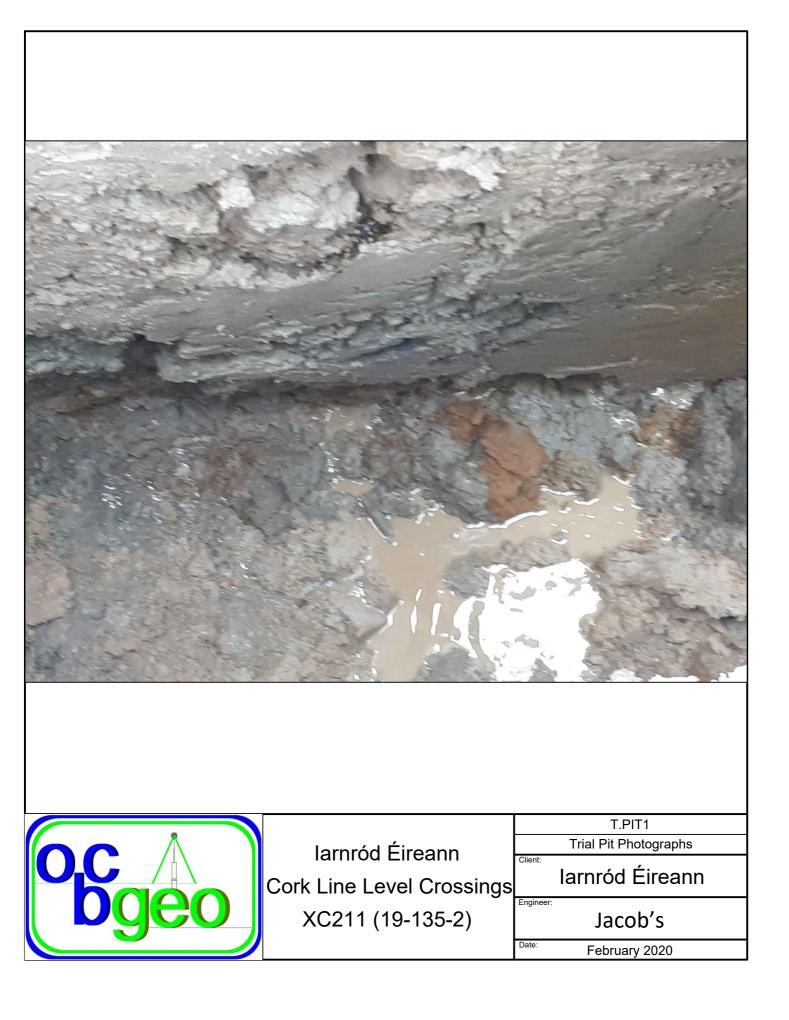
Appendix C

Trial Pit Logs

6			Projec			t Name:			Pit No.:
			19-135			ine Level Crossings		XC2	11-TP01
	Dge	O		inates:	Client:			She	et 1 of 1
Method:			55481	6.90 E		d Éireann / Irish Rail		Scale	: 1:20
Excavation			61796	617963.85 N JACOBS					
Plant:			Groun	d Level:	Date:	5		Drive	r: TS
Kobelco SK14	40SRu			8 mOD	20/02/	/2020		Logge	er: MN
Depth	Sample / Tests	s Field Records	Level (mOD)	Depth (m) (Thickness)			Description	Water	
(m) 0.05 0.40 - 0.90 0.40 - 0.90 0.50 0.55 0.55 1.00 1.00 - 1.50 1.10	ES1 B2 D3 ES4 ES5 B6 D7	HVP=45, HVR=17 HVP=63, HVR=22	97.68 96.98 96.93	(0.30) - 0.30 - 0.30 		TOPSOIL: Soft dark brown slight and frequent rootlets, moist. Soft light brown becoming beig with low cobble content and oc coarse. Gravel is fine to coarse, to subangular, sandstone and si Strata becomes firm by 0.5m and Firm dark brown organic silty Cl moist.			0.5
				- (1.45) 	Max X Max Max X Max Max Max Max				1.5 2.0 -
2.50 - 3.00 2.50 - 3.00	B8 D9		95.48	- 2.50 - - - (0.50) -			y sandy silty CLAY with occasional brown coarse. Gravel is fine to coarse, angular to		2.5
3.00 3.00 - 3.40 3.00 - 3.40	ES12 B10 D11		94.98	- 3.00	×	Light grey becoming yellowish b	prown gravelly SAND, wet.		3.0 -
		Rapid inflow - No rise		(0.40)					
			94.58	- 3.40	<u>, , , + + , + + +</u>	End o	f trial pit at 3.400m		3.5
				_			r _		
Remarks							Water Strikes.	bility:	ocin -
							Struck at (m): Remarks:	es colla	psing
							3.00 Rapid inflow - No rise W	idth:	2.00
rial Pit termir	nated at 3.40m o	due to pit walls collapsing	g.				Lei	ngth:	4.60

6	Projec		Projec	Trial Pit No				
C			19-135			ne Level Crossings	XC	211-TP02
Method: Excavation				inates:	Client: larnróo	Sh	eet 1 of 1	
			55488	4.22 E	Client'	Scal	e: 1:20	
			61808	9.43 N	JACOB			
Plant:			Groun	d Level:	Date:	_ Driv	er: TS	
Kobelco SK140SRu				8 mOD	20/02/	Logg	er: MN	
Depth (m)	Sample / Tests	Field Records	Level (mOD)	Depth (m) (Thickness)		Description	Water	
0.05	ES1		101.2	(0.25)		TOPSOIL: Soft dark brown slightly sandy silty CLAY with frequent rootlets, moist. One red brick fragment.		
0.30 - 0.80 0.30 - 0.80	B2 D3		3	-		Firm light brown slightly sandy silty CLAY with occasional gravel and cobbles, occasional rootlets, moist. Sand is fine to coarse. Gravel is fine to coarse, angular to subangular. Cobbles are angular to subangular, sandstone and limestone.		
0.50 0.50	ES4	HVP=47, HVR=20		- - - - (0.85) -				0.5 -
1.00	ES5		100.3 8	- 1.10		Firm becoming stiff brown slightly sandy slightly gravelly silty CLAY with low cobble and boulder content, moist. Sand is fine to coarse. Gravel is		1.0 —
1.60 - 2.10 1.60 - 2.10	B6 D7			- - - - - - -	18 19 19 19 19 19 19 19 19 19 19	fine to coarse, angular to subangular. Cobbles and boulders are angular to subangular predominantly limestone with occasional sandstone.		1.5
				- (1.60) - (1.60) 	· · · · · · · · · · · · · · · · · · ·			2.0 -
2.70 - 3.20 2.70 - 3.20	88 D9		98.78	- 2.70		Very stiff light brown to brown slightly sandy gravelly silty CLAY with medium cobble and boulder content, slightly moist. Sand is fine to coarse. Gravel is fine to coarse, angular to subangular. Cobbles and boulders are		2.5
3.00	ES10			- (0.60) - - -	x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	angular to subangular, predominantly limestone.		3.0 —
			98.18 98.18	- (8.80)	<u>*</u> *0**8.	Refusal on limestone BOULDERS. End of trial pit at 3.300m		
				- - - - - -				3.5
Remarks				-		Water Strikes: St	ability:	
						Struck at (m): Remarks:	ght spa	lling
		lue to Limestone Bould					/idth: ength:	1.80 3.50


Method: Excavation Plant: Kobelco SK140SRu			Project		Project Name:				Tr	Trial Pit No		
			Co-ordinates: 554939.53 E 618184.48 N Ground Level:		Cork Line Level Crossings Client: Iarnród Éireann / Irish Rail Client's Representative: JACOBS Date:					XC211	L-TPO	
										Sheet	1 of 2	
											1.20	
									50	ale:	1:20	
									D	Driver:		
					20/02/	2020			Lo	ogger	: MN	
Depth (m)	Sample / Tests	Field Records	Level (mOD)	Depth (m) (Thickness)			Description		Water			
0.05	ES1			(0.25)		TOPSOIL: Soft dark brown slight frequent rootlets, moist.	tly sandy slightly gr	avelly silty CLAY wit				
0.30 - 0.80 0.30 - 0.80	B2 D3		111.7 4	- 0.25	-00- -008 -008 -008 -	Firm light brown slightly sandy and boulder content and occasi Gravel is fine to coarse, angular angular to subrounded, limesto	ional rootlets, mois to subrounded. Co	t. Sand is fine to coar	se.			
0.50 0.50	ES4	HVP=44, HVR=21		(0.55)	<u>x0</u> 4 <u>x0</u> 4 x0 <u>x0</u> 4 x0 x0 x0 x0 x0 x0 x0 x0 x0 x0 x0 x0 x0						0.5	
1.00	ES5		111.1 9	- 0.80 - (0.30)	<u>× 0× 8</u> × 0× 8	Stiff light brown slightly sandy g boulder content and occasional Gravel is fine to coarse, angular angular to subrounded, limesto	l rootlets, moist. Sa to subrounded. Co	nd is fine to coarse.	ire		1.0	
		Trickling flow from gravel strata - No rise.	110.8 9	1.10 (0.20)		Light brown slightly clayey sligh content, wet.		GRAVEL with low col	oble		1.0	
1.30 - 1.80 1.30 - 1.80	B6 D7		110.6 9	- 1.30		Stiff becoming very stiff light br low to medium cobble content, to coarse, angular to subrounde subrounded, limestone.	moist. Sand is fine	to coarse. Gravel is f	ine		1.5	
				-								
				- - - - - - -							2.0	
2.50 - 3.00 2.50 - 3.00	B8 D9			- - - (3.20) -							2.5	
3.00	ES10			- - - - - - -							3.0	
3.70 - 4.20 3.70 - 4.20	B11 D12			- - - - - -							3.5	
				- - -		Con	tinued on Next Page					
Remarks		•						Strikes:	Stabili			
							Struck at (m):	Remarks:	Sides s	palling	3	
							1.10	Trickling flow from gravel strata - No	Width	n:	4.40	
							I	rise.				


6	*		Project	t No.:	Project	Name:			Tri	al Pit	No.:
C) .C		19-135			ne Level Crossings			×	C211	-TP03
Method: Excavation			Co-ord	inates:	Client:				S	heet	2 of 2
			00 1000 L		Iarnród Éireann / Irish Rail				-		
			61818	4.48 N		Representative:			Sca	ale:	1:20
					JACOBS				Driver		TS
Plant: Kobelco SK14(d Level: 9 mOD	Date: 20/02/2020				Logger		MN		
Depth	Sample / Tests	Field Records	Level	Depth (m)			Description		Water	00-	
(m)			(mOD)	(Thickness)	<u>x 0 - 8</u> <u>x 0 - 8</u> <u>x 0 - 8</u>				Ň		
			107.4	- - - - - 4.50							4.5 -
			9	- - - -		End o	of trial pit at 4.500m				4.5
				-							5.0 —
				-							
				-							
				-							
				-							
				-							5.5 -
				-							
				-							
				-							6.0 —
				-							
				-							
				-							
				-							
				- - - - -							6.5 —
				-							
				- - -							7.0
				-							
				-							
				-							7.5 -
				-							
				-							
				-							
				-							
				-							
Remarks	1		1	1	I		Water	Strikes:	Stabilit	y:	
							Struck at (m): 1.10	Remarks: Trickling flow from	Sides sp		
							1.10	gravel strata - No rise.	Width		4.40
Trial Pit termina	ated at 4.50m due	e to pit walls spalling inv	wards.						Length	•	2.00

Appendix D

Trial Pit Photographs

